Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT: \(a^2+b^2\ge2ab\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(f\left(x\right)=x^4+\left(1-x\right)^4\ge\frac{\left[x^2+\left(1-x\right)^2\right]^2}{2}\ge\frac{\left[\frac{\left(x+1-x\right)^2}{2}\right]^2}{2}=\frac{1}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1-x\Leftrightarrow x=\frac{1}{2}\)
Vậy tập giá trị của f(x) là: [1/8;+\(\infty\))
Hàm số trên có dạng y = ax + b => Hàm số đồng biến khi a > 0 , nghịch biến khi a<0
a) Hàm số nghịch biến khi \(m-2< 0\Rightarrow m< 2\)
b) Hàm số nghịch biến khi \(m+1< 0\Rightarrow m< -1\)
\(f\left(x_1\right)-f\left(x_2\right)=\dfrac{x_1^2+\left(m+1\right)x_1+3-x_2^2-\left(m+1\right)x_2-3}{x_1-x_2}\)
\(=\left(x_1+x_2\right)-\left(m+1\right)\)
Vì \(x_1;x_2>1\) nên \(x_1+x_2>2\)
Để hàm số đồng biến trên khoảng \(\left(1;+\infty\right)\) thì \(2-m-1>0\)
=>1-m>0
hay m<1
1. \(y=f\left(x\right)=x^2+2\left|x\right|-1\)
TXĐ: D=R
a) Xét tính chẵn lẻ
Với mọi x thuộc D => -x thuộc D
Xét : \(f\left(-x\right)=\left(-x\right)^2+2\left|-x\right|-1=x^2+2\left|x\right|-1=f\left(x\right)\)
=> y= f(x) là hàm chẵn
b) Xét tính đồng biến, nghịch biến
Với mọi \(x_1>x_2\)
\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2+2\left|x_1\right|-1\right)-\left(x_2^2+2\left|x_2\right|-1\right)\)
\(=\left(x_1^2-x_2^2\right)+2\left(\left|x_1\right|-\left|x_2\right|\right)\)
+) \(x_1;x_2\in\left(0;+\infty\right)\)
\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2-x_2^2\right)+2\left(x_1-x_2\right)=\left(x_1-x_2\right)\left(x_1+x_2+2\right)>0\)
=> \(f\left(x_1\right)>f\left(x_2\right)\)
=> Hàm số đồng biến trên \(\left(0;+\infty\right)\)
+) \(x_1;x_2\in\left(-\infty;0\right)\)
\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2-x_2^2\right)+2\left(-x_1+x_2\right)=\left(x_1-x_2\right)\left(x_1+x_2-2\right)< 0\)
=> \(f\left(x_1\right)< f\left(x_2\right)\)
> Hàm số nghịch biến trên \(\left(-\infty;0\right)\)
2.
\(y=f\left(x\right)=x+\frac{1}{x}\)
TXD: D=R\{0}
a) Xét tính chẵn lẻ.
Với mọi x thuộc D => -x thuộc D
Có \(f\left(-x\right)=-x+\frac{1}{-x}=-\left(x+\frac{1}{x}\right)=-f\left(x\right)\)
=> y= f(x) là hàm lẻ
Em tự làm tiếp nhé. Tương tự như trên
a) Hàm số đồng biến khi (2m+3) > 0 => m > -3/2
Hs nghịch biến khi (2m+3) < 0 => m < -3/2
b) , c , d tương tự