K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2020

1) x2 + 10x + 26 + y2 + 2y 

= (x2 + 10x + 25) + (y2 + 2y + 1)

= (x2 + 5x + 5x + 25) + (y2 + y + y + 1)

= x(x + 5) + 5(x + 5) + y(y +  1) + (y + 1)

= (x + 5)2 + (y + 1)2

2) z2 - 6z + 13 + t2 + 4t 

= (z2 - 6z + 9) + (t2 + 4t + 4) 

= (z2 - 3z - 3z + 9) + (t2 + 2t + 2t + 4)

= z(z - 3) - 3(z - 3) + t(t + 2) + 2(t + 2)

= (z - 3)2 + (t + 2)2

3) x2 - 2xy + 2y2 + 2y + 1

(x2 - 2xy + y2) + (y2 + 2y + 1)

= (x - xy - xy + y2) + (y2 + y + y +1)

= x(x - y) - y(x - y) + y(y + 1) + (y + 1)

= (x - y)2 + (y + 1)2

10 tháng 6 2018

Bài 1:

a) \(x^2+10x+26+y^2+2y=(x^2+10x+25)+(y^2+2y+1)\)

..................................................= \(\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(z^2-6z+5-t^2-4t=(z^2-6t+9)-(t^2+4t+4)\)

............................................= \(\left(z-3\right)^2-\left(t+2\right)^2\)

c) \(x^2-2xy+2y^2+2y+1=(x^2-2xy+y^2)+(y^2+2y+1)\)

..................................................= \(\left(x-y\right)^2+\left(y+1\right)^2\)

d) \(4x^2-12x-y^2+2y+8=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)

.................................................= \(\left(2x-3\right)^2-\left(y-1\right)^2\)

10 tháng 6 2018

Bài 2:

a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)

b) \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)

c) \(\left(y+2z-3\right)\left(y-2z+3\right)=y^2-\left(2z-3\right)^2\)

d) \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)

4 tháng 7 2017

\(x^2+10x+26+y^2+2y=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=\left(x+5\right)^2+\left(y+1\right)^2\)

\(z^2-6z+5-t^2-4=\left(z^2-6z+9\right)-\left(t^2+8\right)=\left(z-3\right)^2-\left(t^2+8\right)\)

\(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)

\(4x^2-12x-y^2+2y+1=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)-7=\left(2x-3\right)^2-\left(y-1\right)^2-7\)

Chúc bạn học giỏi 

Kết bạn với mình nha 

3 tháng 10 2019

Vì \(5x=2y=3z\)

\(\Rightarrow5x:30=2y:30=3z:30\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Lại có: \(x+y-2=220\Rightarrow x+y=222\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)

Vậy ...

3 tháng 10 2019

Bài 1:

\(5x=2y=3z\)

\(\Rightarrow5x:30=2y:30=3z:30\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Vì \(x+y-2=220\Rightarrow x+y=222\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)

ko ai rảnh để trả lời đâu

1 tháng 5 2019

\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)

\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)

\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)

\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)

\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)

5 tháng 5 2020

\(a,5x^3-3x^2+x-x^3-4x^2-x\)

\(=4x^3-7x^2\)

\(b,y^2+2y-2y^2-3y+3\)

\(=-y^2-y+3\)

\(c,\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1\)

\(=\frac{1}{6}x^3-2x^2-5x+1\)

\(d,\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2\)

\(=xy^2+\frac{1}{6}y^2\)

\(e,2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy\cdot y\)

\(=3xy-\frac{3}{2}z^2y+2zy^2\)

\(g,3^n+3^{n+2}\)

\(=3^n+3^n.3^2\)

\(=3^n\cdot10\)

\(h,1,5\cdot2^n-2^{n-1}\)

\(=1,5\cdot2^n-2^n\cdot\frac{1}{2}\)

\(=2^n\cdot1\)

\(=2^n\)

\(i,2^n-2^n-2\)

\(=-2\)

\(k,\frac{2}{3}\cdot3^n-3^{n-1}\)

\(=\frac{2}{3}\cdot3^n-3^n\cdot\frac{1}{3}\)

\(=3^n\cdot\frac{1}{3}\)

\(=\frac{3^n}{3}\)

sẵn bán nick luôn :)

Cái này hơi lâu thật,nhưng kiên trì 1 chút là đc ngay thôi bn !

a, \(5x^3-3x+x-x^3-4x^2-x=4x^3-3x-4x^2\)

b, \(y^2+2y-2y^2-3y+3=-y^2-y+3\)

c, \(\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1=-2x^2-5x+1\)

d, \(\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2=\frac{3}{4}xy^2-\frac{1}{2}y^2+\frac{1}{4}xy^2+\frac{2}{3}y^2=xy^2+\frac{1}{6}y^2\)

e, \(2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy.y=2xy-2yz^2+xy+\frac{1}{2}z^2y+2zy^2=3xy-\frac{3}{2}z^2y+2zy^2\)

g, \(3^n+3^{n+2}\)( chắc tối giản rồi,ko phân tích đc nữa. )

h, \(1,5.2^n-2^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )

i, \(2^n-2^n-2=-2\)

k, \(\frac{2}{3}.3^n-3^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )

Có j sai,mong mọi người góp ý,thông cảm ạ.