Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có 1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
mk viết nhầm: Chúng tó S không là số tự nhiên
Làm hộ mk nha, ai xong trc mk k cho.
Ta có: A =\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
=\(\left(\frac{1}{101}+\frac{1}{102}...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)<
<\(\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
K CHO MIK VS NHÉ!
Cho G =1/100^2+1/101^2+1/102^2+....+1/198^2+1/199^2 . CMR 1/200 bé hơn G bé hơn 1/99
Giúp mk với nha.
Ta có : \(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\frac{1}{101^2}< \frac{1}{100.101}\)
\(\frac{1}{102^2}< \frac{1}{101.102}\)
...
\(\frac{1}{198^2}< \frac{1}{197.198}\)
\(\frac{1}{199^2}< \frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99.100}+\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{197.198}+\frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{198}-\frac{1}{199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)(1)
Ta có : \(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\frac{1}{101^2}>\frac{1}{101.102}\)
\(\frac{1}{102^2}>\frac{1}{102.103}\)
...
\(\frac{1}{199^2}>\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{199}-\frac{1}{200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{200}< G< \frac{1}{99}\)
Vậy \(\frac{1}{200}< G< \frac{1}{99}\).
Tách A thành 2 nhóm A1 , A2
A1 = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
A2 = \(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\)
\(\Rightarrow\)A = A1 + A2 > \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Bài 4 :
xy - x + 2y = 3
x ( y - 1 ) + 2y - 2 = 3 - 2
x ( y - 1 ) + 2 ( y - 1 ) = 1
( y - 1 ) ( x + 2 ) = 1
Xét bảng :
y-1 | 1 | -1 |
x+2 | 1 | -1 |
y | 2 | 0 |
x | -1 | -3 |
Vậy (x;y) = (-1;2) = (-3;0)
a, xy-x+2y=3
<=>x(y-1)+2(y-1)=1
<=>(x+2)(y-1)=1
x+2 | 1 | -1 | |
y-1 | 1 | -1 |
x | -1 | -3 |
y | 2 | 0 |
để 10n/5n-3 là số nguyên(n thuộc Z) suy ra 10n chia hết cho 5n-3
suy ra 5n-3 chia hết cho 5n-3 suy ra 2(5n-3) hay10n-6 chia hết cho 5n-3
suy ra 10n-(10n-6) chia hết cho 5n-3
suy ra 6 chia hết cho 5n-3
suy ra 5n-3 thuộc ư(6)={2;-3}
5n thuộc {5;0}
n thuộc {1;0}
Ta có 1/101+1/102+...+1/200>1/200+1/200+...+1/200(có 100 phân số 1/200)=1/2
suy ra
1/2<D
Ta có 1/101+1/102+...+1/200<1/100+1/100+...+1/100(100 phân số 1/100)=1
Vậy 1/2<D<1(thỏa mãn điều kiện chứng minh)
Ta có :
\(N=\frac{101^{103}+1}{101^{104}+1}< 1=\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
Vậy\(N< M\)