Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c: Ta sẽ cm góc BDN = góc HND ( vì cùng bằng góc AND)
Thật vậy: BDN = AND slt
HND = AND (dễ cm tam giác ANH cân tại N, AH dễ cm là đường cao, nên đồng thời là phân giác)
Þtứ giác BHND là hình thang cân
Câu d: Gọi I là giao điểm của HM và DK
Xét tứ giác ADBN có
BD = AN (=HN vì BHND là hình thang cânÞ BD = HN, AHCK là hcn ÞAN = HN)
suy ra Tứ giác ADBN là hbh ÞM là trung điểm của DN suy ra MD = MN
Xét tam giác EDN có MI song song EN, MD = MN (cmt)suy ra MI là đường trung bình hay ID = IE (1)
Tương tự xét tam giác KIH có NE là đường trung bình hay EK = IE (2)
Từ (1) và (2) suy ra ID = IE = EK. Vậy DE = 2EK
1A) Gọi I là giao điểm của EF và AB Vì EF là đường trung trực của MB nên BE=BF xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv) IE=IF; EF vuông góc AB =) E và F đối xứng nhau qua AB nên ta chứng minh được hai tam giác BEI và BF1 bằng nhau. 1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi 1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC
A A A B B B C C C H H H I I I K K K D D D a/\(\Delta ABK:IA=IB,BH=KH\Rightarrow IH//AK,AD//\Rightarrow AKHD\) là hình bình hành
b/\(AHBD:AD//,AD=BH\left(=HK\right),AH\perp BH\Rightarrow AHBD\)là hình chữ nhật
\(\Rightarrow S_{AHBD}=AH.BH=6.\sqrt{\left(AB^2-AH^2\right)}=6.8=48cm^2\)
a) Chứng minh : BHCK là hình bình hành
Xét tứ giác BHCK có : MH = MK = HK/2
MB = MI = BC/2
Suy ra : BHCK là hình bình hành
b) BK vuông góc AB và CK vuông góc AC
Vì BHCK là hình bình hành ( cmt )
Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )
mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )
Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )
c) Chứng minh : BIKC là hình thang cân
Vì I đối xứng với H qua BC nên BC là đường trung bình của HI
Mà M thuộc BC Suy ra : MH = MI ( tính chất đường trung trực )
mà MH = MK = HK/2 (gt)
Suy ra : MI = MH = MK = 1/2 HC
Suy ra : Tam giác HIK vuông góc tại I
mà BC vuông góc HI (gt)
Suy ra : IC // BC
Suy ra : BICK là hình thang (1)
Ta có : BC là đường trung trực của HI (cmt)
Suy ra : CI = CH
Tiếp ý c
mà CH = BK ( vì BKCH là hình bình hành)
Suy ra : BK = CI (2)
Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )
d) Giả sử GHCK là hình thang cân
Suy ra : Góc HCK = Góc GHC
mà góc HCK + góc C1 = 90 độ
góc GHC + góc C2 = 90 độ
Suy ra : Góc C1= góc C2
Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC
Suy ra : Tam giác ABC cân tại C
B A C M N E F O
\(\hept{\begin{cases}MN\perp AB\\MF\perp AC\\\widehat{BAC}=90^0\end{cases}\Rightarrow}\)tứ giác AEMO là hình chữ nhật
N là điểm đối xúng với M qua AB \(\hept{\begin{cases}NE=EM\\AE=EB\\MN\perp AB\end{cases}\Rightarrow}\)AMBN là hình thoi
Hình vẽ (Nhập link rồi enter ra nhé, xin lỗi vì sự bất tiện): https://i.imgur.com/zZhSvQH.png
a) Xét tứ giác AEMO có: \(\widehat{BAC}=90^o;\widehat{AEM}=90^o;\widehat{AOM}=90^o.\)=> AEMO là hình chữ nhật
b) ta có: AEMO là hình chữ nhật (cmt) => ME//AO => ME//AC
do BM = CM (M là trung điểm của BC); ME//AC (cmt) => EA = EB
Xét tứ giác AMBN có:
EM = EN (N đối xứng với M qua AB)
\(AB\perp MN\)( nt )
EA = EB (cmt)
=> AMBN là hình thoi (đpcm)
Học tốt nhé! ^3^
Mình ko vẽ hình đâu nha
Ta có : Góc MAB = góc ABC ( vì MN // BC)
Góc NAC = góc ACB ( vì MN // BC )
Mà góc ABC= góc ACB ( Tam giác ABC cân )
Nên góc MAB=góc NAC
Xét tam giác ABM và tam giác ACN có
AB=AC ( vì tam giác ABC cân tại A )
Góc MAB= góc NAC ( cmt)
MA= NA ( vì A là tđ cuả MN )
Nên tam giác ABM = ACN
BCMN có BC// Mn và góc BMA=góc CNA ( 2 góc tương ứng)
Nên MNCB là hình thang cân