Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét f(x) = 2x - 4 = 0
=> 2x = 4
=> x = 2
xét g(x) = x^2 - ax + 2 = 0
=> g(2) = 2^2 - 2a + 2 = 0
=>6 - 2a = 0
=> 2a = 6
=> a = 3
vậy a = 3 để nghiệm của f(x) đồng thời là nghiệm của g(x)
Ta có f(x)=0
<=> 2x-4=0
<=> 2x=4
<=> x=2
Vậy x=2 là nghiệm của f(x)
Mà nghiệm của f(x) cũng là nghiệm của g(x)
=> g(2)=0
<=> 2^2-2a+2=0
<=>2a=6
<=>a=3
Số dữ và có cái vô nghiệm ... câu này nhìn qua con làm thôi.
a, \(5x^2-x+4=0\)
Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)
Nên phương trình vô nghiệm
b, \(x^2+3x-2=0\)
Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)
Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)
a, \(5x^2-x+4=0\)
Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)
Nên phương trình vô nghiệm
b, \(x^2+3x-2=0\)
Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)
Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)
\(P\left(x\right)=ax^2+bx+c\)
Ta có: \(P\left(-1\right)=a-b+c\)
\(P\left(-2\right)=4a-2b+c\)
\(\Rightarrow P\left(-1\right)+P\left(-2\right)=5a-3b+2c=0\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\) \(\Rightarrow P\left(-1\right).P\left(-2\right)\le0\)
Câu hỏi của Phạm Thị Minh Tú - Toán lớp 7 | Học trực tuyến:bạn tham khảo tại đây nhé !
\(\left(x-\frac{2}{5}\right)^2-1=8\)
\(\left(x-\frac{2}{5}\right)^2=9=3^2\)
\(\Rightarrow x-\frac{2}{5}=3\)
\(x=\frac{17}{5}\)
\(\left(x-\frac{2}{5}\right)^2-1=8\)
\(\Rightarrow\left(x-\frac{2}{5}\right)^2=9\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{2}{5}\right)^2=3^2\\\left(x-\frac{2}{5}\right)^2=\left(-3\right)^2\end{cases}\Rightarrow\orbr{\begin{cases}x-\frac{2}{5}=3\\x-\frac{2}{5}=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=3+\frac{2}{5}\\x=-3+\frac{2}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{17}{5}\\x=\frac{-13}{5}\end{cases}}}\)
1. f(-2) = 3.(-2)2-1 = 3.4-1 = 11
f(1/4) = 3.(1/4)2-1=-13/16
2. f(x) = 47
=> 3x2 - 1 = 47
=> 3x2 = 48
=> x2 = 16
=> x = 4 hoặc x = -4
3. f(x) = f(-x)
<=> 3x2 - 1 = 3.(-x)2 - 1
Mà x2 = (-x)2
=> 3x2 - 1 = 3.(-x)2 - 1
=> f(x) = f(-x) (đpcm)
a) A + ( x2y - 2xy2 + 5xy - 3 ) = -2x2y + xy2 + xy - 5
A = -2x2y + xy2 + xy - 5 - ( x2y - 2xy2 + 5xy - 3 )
A = -2x2y + xy2 + xy - 5 - x2y + 2xy2 - 5xy + 3
A = ( -2x2y - x2y ) + ( xy2 + 2xy2 ) + ( xy - 5xy ) + ( -5 + 3 )
A = -3x2y + 3xy2 + ( -4xy ) + ( -2 )
b) x = -1, y = 1
Thay x = -1, y = 1 vào đa thức A ta được :
\(-3\left(-1\right)^2\cdot1^2+3\left(-1\right)\cdot1^2+\left(-4\left(-1\right)\cdot1\right)+\left(-2\right)\)
\(=-3\cdot1+\left(-3\right)\cdot1+\left(4\cdot1\right)+\left(-2\right)\)
\(=\left(-3\right)+\left(-3\right)+4+\left(-2\right)\)
\(=-6+4+\left(-2\right)\)
\(=-4\)
Vậy A = -4 khi x = -1 , y = 1
Ta có: Q(-1) = -(-1)2 + a.(-1) = -1 - a
Q(1) = -12 + a.1 = -1 + a
Mà Q(-1) = 2Q(1)
=> -1 - a = 2.(-1 + a)
=> -1 - a = -2 + 2a
=> -1 + 2 = 2a + a
=> 1 = 3a
=>a = 1 : 3
=> a = 1/3
Vậy a = 1/3