Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có tam giác BCD cân tại C
=>góc CDB bằng góc CBD
=>BC//AD(goc ADB = gocCBD)
=>DPCM ABCD là hình thang
Ta có hình vẽ: A B C D 1 1 2
Ta có: BC= CD (gt)
=> \(\Delta BCD\) cân tại C
=> góc B1 = góc D1
mà góc D1 = D2 (gt)
=> góc D2 = góc B1
mặt khác 2 góc D2 và B1 đang ở vị trí so le trong
=> AB // CD
=> tứ giác ABCD là hình thang
B C D A
Vì BC=CD=>Tam giác BCD cân tại C=>\(\widehat{CBD}=\widehat{CDB}\)(1)
Vì DB là tia phân giác của góc D => \(\widehat{CDB}=\widehat{ADB}\)(2)
Từ (1) và (2) => \(\widehat{CBD}=\widehat{ADB}\),mà 2 góc ở vị trí so le trong
=> AD song song với BC.
=> ABCD là hình thang.
ΔBCD có BC = CD (gt) nên ΔBCD cân tại C.
⇒ ∠ B 1 = ∠ D 1 (tính chất tam giác cân)
Mà ∠ D 1 = ∠ D 2 ( Vì DB là tia phân giác của góc D)
Suy ra: ∠ B 1 = ∠ D 2
Do đó: BC // AD (vì có cặp góc ở vị trí so le trong bằng nhau)
Vậy ABCD là hình thang.
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
Ta có:
\(\Delta DCB\)là tam giác cân tại \(C\)
Mà: \(DC=CB\left(gt\right)\)
\(\rightarrow\widehat{BDC}=\widehat{DBC}=\widehat{ADB}\)hay \(\widehat{ADB}=\widehat{DBC}\)
\(\rightarrow AD//BC\)( so le dong )
\(\rightarrow ABCD\)là hình thang