Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=3x+m\)(*)
1) a) Đồ thị hàm số (*) đi qua \(A\left(-1,3\right)\)nên \(3=3.\left(-1\right)+m\Leftrightarrow m=6\).
b) Đồ thị hàm số (*) đi qua \(B\left(-2,5\right)\)nên \(5=3.\left(-2\right)+m\Leftrightarrow m=11\).
2) Đồ thị hàm số (*) cắt trục hoành tại điểm có hoành độ \(3x+m=0\Leftrightarrow x=-\frac{m}{3}\)
Suy ra \(-\frac{m}{3}=-3\Leftrightarrow m=9\).
3) Đồ thị hàm số (*) cắt trục tung tại điểm có tung độ \(y=3.0+m=m\)
suy ra \(m=-5\).
2) Phương trình hoành độ giao điểm là:
3x+m=2x-1
\(\Leftrightarrow3x-2x=-1-m\)
\(\Leftrightarrow x=-m-1\)
Để (*) cắt đồ thị của hàm số y=2x-1 tại điểm nằm trên góc vuông phần tư thứ IV thì \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m-1>0\\2x-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m>1\\2\left(-m-1\right)-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-2m-2-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-2m< 3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\m>\dfrac{-3}{2}\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}< m< -1\)
a, bạn tự vẽ nhé
b, Để hàm số nghịch biến khi m < 0
c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3
Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)
d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3
Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)
bổ sung hộ mình nhé
( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)
Lời giải:
1. Để đths đi qua $A(-2;-2)$ thì:
$y_A=(m-2)x_A^2$
$\Leftrightarrow -2=(m-2)(-2)^2$
$\Leftrightarrow m-2=\frac{-1}{2}$
$\Leftrightarrow m=\frac{3}{2}$
2.
PT hoành độ giao điểm của đths câu 1 với $y=-1$ là:
$(\frac{3}{2}-2)x^2=-1$
$\Leftrightarrow \frac{-1}{2}x^2=-1$
$\Leftrightarrow x^2=2$
$\Leftrightarrow x=\pm \sqrt{2}$
Vậy 2 tọa độ giao điểm là $M(\sqrt{2}; -1); (-\sqrt{2}; -1)$
Để là hàm số bậc nhất:\(\frac{1}{\sqrt{m-1}}-1\ne0\) (đK: m>1)
\(\Leftrightarrow\sqrt{m-1}\ne1\Leftrightarrow m-1\ne1\Leftrightarrow m\ne2\)
Vậy m>1 và m khác 2
Để ptđt trên là hàm bậc nhất khi \(3-m\ne0\Leftrightarrow m\ne3\)
Thay x = 0 ; y = 5 vào ptđt y = (3-m)x + m-4
\(5=m-4\Leftrightarrow m=9\)(tm)
A(-1,3)=>x=-1,y=3 rồi bạn thay x=-1,y=3 vào (*) để tìm m. Tương tự như điểm B và C ạ