Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
a, A = 3|2x - 1| - 5 = 0
có 3|2x - 1| > 0
=> A > -5
xét A = -5 khi
|2x - 1| = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
vậy Min A = -5 khi x = 1/2
b, c, d, làm tương tự
Bài 1:
\(a)A=3|2x-1|-5\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow3|2x-1|\ge0\) \(\forall x\)
\(\Rightarrow3|2x-1|-5\ge-5\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_A=-5\Leftrightarrow x=\frac{1}{2}\)
\(b)x^2+3|y-2|-1\)
Vì \(\hept{\begin{cases}x^2\ge0\forall x\\3|y-2|\ge0\forall y\end{cases}}\)
\(\Rightarrow x^2+3|y-2|-1\ge-1\) \(\forall x,y\)
Dấu '=' xảy ra:
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy \(Min_B=-1\Leftrightarrow x=0,y=2\)
\(c)\left(2x^2+1\right)^4-3\)
Vì \(\left(2x^2+1\right)^4\ge0\)\(\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x^2+1=0\)
\(\Leftrightarrow2x^2=-1\)
\(\Leftrightarrow x^2=-\frac{1}{2}\left(voli\right)\)
Vậy không tìm được gt x
\(d)D=|x-\frac{1}{2}|+\left(y+2\right)^2+11\)
Vì \(\hept{\begin{cases}|x-\frac{1}{2}|\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow|x-\frac{1}{2}|+\left(y+2\right)^2+11\ge11\) \(\forall x,y\)
Dấu '=' xảy ra:
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)
Vậy \(Min_D=11\Leftrightarrow x=\frac{1}{2},y=-2\)
Bài 2:
\(a)A=10-5|x-2|\)
Vì \(|x-2|\ge0\)\(\forall x\)
\(\Rightarrow5|x-2|\ge0\)\(\forall x\)
\(\Rightarrow\)\(10-5|x-2|\le10\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(Max_A=10\Leftrightarrow x=2\)
\(b)B=5-|2x-1|^2\)
Vì \(|2x-1|^2\ge0\)\(\forall x\)
\(\Rightarrow5-|2x-1|^2\le5\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=5\Leftrightarrow x=\frac{1}{2}\)
\(c)C=\frac{1}{|x-2|+3}\)
Vì \(|x-2|\ge0\)\(\forall x\)
\(\Rightarrow|x-2|+3\ge3\) \(\forall x\)
\(\Rightarrow\frac{1}{|x-2|+3}\le\frac{1}{3}\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(Max_C=\frac{1}{3}\Leftrightarrow x=2\)
Nếu A nhỏ nhất => x-3 lớn nhất mak x\(\in\) Z . Mk k hiểu lắm x-3 lớn nhất thì nhiều số x ak, hay sao? lm giùm mk đi các bn
Vì \(\left|3x+1\right|\ge0\forall x\Rightarrow2\left|3x+1\right|\ge0\forall x\)
\(\Rightarrow2\left|3x+1\right|-4\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)
a) \(A\ge-4\) (do \(\left|3x+1\right|\ge0\))
Dấu "=' xảy ra <=>\(x=-\frac{1}{3}\)
b) Tương tự \(B\ge23\)
\(ĐK:x\ne1\)
Để \(A=\frac{5}{x-1}\)là số nguyên
\(\Leftrightarrow5⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-4;6\right\}\)
Để \(B=\frac{x+2}{x-1}\)là số nguyên
\(\Leftrightarrow x+2⋮x-1\)
\(\Leftrightarrow x-1+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)
Vậy để A và B cùng là số nguyên thì \(x\in\left\{0;2\right\}\)
Trả lời :
Mình làm thế này nè sai thì thuii nhé :)
a ) Để \(\frac{5}{x-1}\) \(\varepsilon\) \(ℤ\) thì => 5 phải chia hết cho ( x-1 ) hay x - 1 = Ư(5) = { - 1 ; 1 ; 5 ; -5 }
Ta có bảng sau :
x-1 | -5 | -1 | 1 | 5 |
x | -4 | 0 | 2 | 6 |
b ) Để \(\frac{x+2}{x-1}\) \(\varepsilon\) \(ℤ\) thì \(\frac{3}{x-2}\) phải \(\varepsilon\) \(ℤ\) => 3 phải chia hết cho ( x - 1 ) và x \(\ne\) 1
+ => x - 1 = Ư(3) = { 1 ; - 1 ; 3 ; -3 }
Chúc bạn học tốt <3
a) A = \(\left|x-\frac{1}{2}\right|+30\ge0+30=30\)
=> GTNN của A = 30 khi x - 1/2 = 0 => x = 1/2
b) B = \(40-\left|12+x\right|\) \(\le\) 40 - 0 = 40 (Vì \(\left|12+x\right|\ge0\) với mọi x)
=> GTLN của B = 40 khi 12 + x = 0 => x = -12
a, \(A=4\left|x-2\right|+1\)
Ta có : \(4\left|x-2\right|\ge0\)
\(\Rightarrow4\left|x-2\right|+1\ge1\)
Vậy giá trị nhỏ nhất là 1 khi x - 2 = 0 => x = 2
b, Ta đã biết với mọi \(x,y\inℚ\)thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Đẳng thức xảy ra khi \(xy\ge0\)
Ta có \(B=\left|x-2020\right|+\left|x-1\right|=\left|x-2020\right|+\left|1-x\right|\ge\left|x-2020+1-x\right|=\left|-2019\right|=2019\)
Vậy \(B\ge2019\), B đạt giá trị nhỏ nhất là 2019 khi \(1\le x\le2020\)