Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)
a, Tự chép đề bài ((:
\(=\frac{1}{9}\cdot1+\left(-\frac{1}{243}\right)\cdot\frac{9}{2}\)
\(=\frac{1}{9}-\frac{1}{54}\)
\(=\frac{5}{54}\)
b, 1. \(\left(\frac{2^2\cdot2^3}{4^2\cdot16}\right)^{15}\)
\(=\left(\frac{2^5}{2^4\cdot2^4}\right)^5=\left(\frac{2^5}{2^8}\right)^5=\left(\frac{1}{2^3}\right)^5=\left(\frac{1}{8}\right)^5=\frac{1}{8^5}\)(Để vậy đi :v)
2. \(\left(\frac{2^6}{16^2}\right)^{10}\)
\(=\left(\frac{2^6}{2^8}\right)^{10}=\left(\frac{1}{2^2}\right)^{10}=\frac{1}{2^{20}}\)
c, \(\frac{2^{15}\cdot9^4}{6^6\cdot8^3}\)
\(=\frac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\frac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\frac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=\frac{3^2}{1}=3^2=9\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
Lời giải:
$x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7})< 1\frac{6}{7}$
$x(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7})< \frac{13}{7}$
$x(1-\frac{1}{7})< \frac{13}{7}$
$x.\frac{6}{7}< \frac{13}{7}$
$x< \frac{13}{7}: \frac{6}{7}=\frac{13}{6}$
Vì $x$ là số nguyên nên $x\leq 2$
Vậy $x$ là các số nguyên sao cho $x\leq 2$.
giá một chiếc xe đạp thường là 900000 đồng nhân dịp ngay lễ cửa hàng giảm giá 10 phần trăm . hỏi cửa hàng đó bán một chiếc xe đạp như thế trong ngày lễ là bao nhiêu tiền
\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}.\left(2^4\right)^2.7^{48}}\)
\(A=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)
\(A=\frac{7^{48}.5^{30}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{48}}\)
\(A=\frac{5.\left(-27\right)}{1}=-135\)
\(\Rightarrow A=4.\left[\frac{6}{2.\left(2.4\right)}+\frac{5}{\left(2.4\right).13}+\frac{3}{13.\left(4.4\right)}+\frac{2}{\left(4.4\right).18}+\frac{10}{18.\left(7.4\right)}\right]\)
\(=4.\left(\frac{6}{2.8}+\frac{5}{8.13}+\frac{3}{13.16}+\frac{2}{16.18}+\frac{10}{18.28}\right)=4.\left(\frac{1}{2}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{18}+\frac{1}{18}-\frac{1}{28}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{28}\right)=4.\frac{13}{28}=\frac{13}{7}\)
Thank you <3