Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Số số hạng có trong dãy số trên là : ( 99 - 1 ) : 1 + 1
= 98 + 1 = 99
Tổng của dãy số trên là : ( 99 + 1 ) x 99 : 2
= 100 x 99 : 2
= 9900 : 2 = 4950
số số hạng là: (99-1):1 +1 = 99(số)
tổng của dãy số đó là: (99+1) x99 :2=4950
k mk^_^
Bài 1:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Bài 2:
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
#Châu's ngốc
lm lại bài 2:
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
=>A=\(\frac{n\times\left(n+1\right)\left(n+2\right)}{3}\)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
1 Giải
Số lượng số hạng là:
(99-1):1+1=99(số hạng)
Tổng dãy B là:
(99+1).99:2=4950
Đ/S:4950
Tính B = 1 + 2 + 3 + ... + 98 + 99
Tổng B có SSH là : ( 99 - 1 ) : 1 + 1 = 99
Tổng B là : ( 99 + 1 ) x 99 : 2 = 4950
Vậy Tổng B = 4950
B= 1 + 2 + 3 +.......+98 + 99
B có số số hạng là :
( 99 - 1 ) : 1 + 1 =99 ( số)
Tổng của biểu thức trên là ( B là )
(99 + 1) x 99 : 2 =4950
Bài 1. B = 1 + 2 + 3 + ... + 98 + 99
Số số hạng : ( 99 - 1 ) : 1 + 1 = 99 số
Tổng : ( 99 + 1 ) . 99 : 2 = 4950
=> B = 4950
Công thức
Tính số số hạng : ( số lớn - số bé ) : khoảng cách + 1
Tính tổng : ( số lớn + số bé ) . số số hạng : 2
=> Tương tự với C và D
Bài 1:
Dãy B có số số hạng là:(99-1):1 +1=99 số số hạng
=> B=\(\frac{\left(99+1\right)\cdot99}{2}=4950\)
Bài 2:
Dãy C có số số hạng là: (999-1):2+1=500 số số hạng
=> \(C=\frac{\left(999+1\right)\cdot500}{2}=250000\)
Bài 3: làm tương tự
A = 2100 - 299 + 298 - 297 +...+ 22 - 2
=> 2A = 2101 - 2100+299 - 298+...+23-22
=> 2A+A= 2101 -2
=> \(A=\frac{2^{101}-2}{3}\)
phần B bn lm tương tự nha!
Số số hạng của dãy số là :
(99 - 1) : 1 + 1 = 99 (số hạng)
Tổng dãy số là :
(99 + 1) . 99 : 2 = 4950
Vậy tổng dãy số là 4950.
~Study well~
#SJSZ
B=\(\frac{\left(1+99\right).99}{2}\)=4950