Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2=x\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) \(x^2=2x\Leftrightarrow x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
c) \(x^2=-1\)vì \(x^2\ge0,\forall x\)nên phương trình vô nghiệm.
d) \(x^2=1\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
a, x2 = x
x2 - x = 0
x (x - 1) = 0
=> x = 0 hoặc x - 1 = 0
=> x = 0 hoặc x = 1
Vậy x thuộc {0 ; 1}.
b, x2 = 2x
x2 - 2x = 0
x (x - 2) = 0
=> x = 0 hoặc x - 2 = 0
=> x = 0 hoặc x = 2
Vậy x thuộc {0 ; 2}.
c, x2 = -1
Ta có: x2 >= 0 với mọi x
=> x2 = -1 (vô lí)
Vậy x thuộc tập hợp rỗng.
d, x2 = 1
=> x2 = 12 = (-1)2
=> x = 1 hoặc x = -1
Vậy x thuộc {-1 ; 1}.
a)Đặt x^3+x^2=0
<=> x^2(x+1)=0
<=>x=0;x=-1
Vậy, nghiệm của đa thức x^3+x^2 là x=0;x=-1
b)Đặt x^3+x^2+x+1=0
<=> x^2(x+1)+(x+1)=0
<=>(x^2+1)(x+1)=0
<=>x^2=-1(vô lí vì x^2>0 với mọi x); x=-1
Vậy đa thức có nghiệm x=-1
Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:
a. x2 - 2xy + 2y2 + 2y +1
= (x2 - 2xy + y2) +( y 2 + 2y +1)
= (x-y)2 + (y+1)2
b. 4x2 - 12x - y2 + 2y + 8
= (4x2 - 12x + 9 ) - (y2 - 2y +1 )
= (2x-3)2 - (y-1)2
a)\(A=x^2-1\)
\(Nx:\)\(x^2\ge0\)
\(\Rightarrow A_{Min}=0-1=-1\Leftrightarrow x=0\)
b) \(B=x^2-2x+3\)
\(=x\left(x-2\right)+3\)
\(Nx:x\left(x-2\right)\ge0\)
\(\Rightarrow B_{Min}=3\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow x=0\)
c) \(C=\left|2x+1\right|-5\)
\(Nx:\left|2x+1\right|\ge0\Rightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
\(\Rightarrow C_{Min}=-5\Leftrightarrow x=\frac{-1}{2}\)
d) \(D=3x^2+6x-7\)
\(=3\left(x^2+2x\right)-7\)
\(Nx:Min_{x^2+2x}=-1\Leftrightarrow x=-1\)
\(D_{Min}=-8\Leftrightarrow x=-1\)
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
a) \(3\left(2x-1\right)+1=\left(-2\right)^2-3\left(-2\right)^3\)
\(\Leftrightarrow6x-3+1=4+24\)
\(\Leftrightarrow6x=4+24-1+3\)
\(\Leftrightarrow6x=30\)
\(\Leftrightarrow x=5\)
b) \(\left(x-2\right)\left(x+3\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2>0\\x+3>0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>2\\x>-3\end{cases}}\)
c) \(x^2\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-9=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\pm3\\x=-2\end{cases}}\)
Tìm nghiệm của đa thức sau :
a, x2 - 2x + 1
b, x2 +3x +2
Mh đag cần gấp. M.n giúp mh nha!!!!!!!!!!!!!!!
Tìm nghiệm của đa thức sau :
a, x2 - 2x + 1
b, x2 +3x +2
Mh đag cần gấp. M.n giúp mh nha!!!!!!!!!!!!!!!
a)Ta tìm nghiệm của đa thức x^2-2x+1,ta được:
x^2-2x+1=0
=>x^2-2x=-1
=>x(x-2)=-1
+)x=-1
+)x-2=-1
=>x=1
b)Ta tìm nghiệm của đa thức:x^2+3x+2,ta được:
x^2+3x+2
=>x^2+3x=-2
=>x(x+3)=-2
+)x=-2
+)x+3=-2
=>x=-1
Tôi giúp bạn rồi đấy nhé.
a, x2 = x
=> x2 - x =0
=> x(x-1) =0
=> x = 0 hoặc x=1
b, x2 = 2x
=> x2 - 2x =0
=> x(x-2) = 0
=> x= 0 hoặc x=2
c, x2 = -1
vì x2 \(\ge\)0 với mọi x
=> x2 +1 >0
=> x2 > -1
=> x2 =-1 là vô lí
d, x2 =1
=> x = 1 hoặc x =-1
Bài làm :
\(a,x^2=x\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(b,x^2=2x\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(c,x^2=-1\) ( sai )
Vì \(x^2\ge0\forall x\)
\(d,x^2=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Học tốt