Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{x}{8}=\frac{-30}{y}=\frac{-48}{32}\)
Rút gọn : \(\frac{-48}{32}=\frac{(-48):16}{32:16}=\frac{-3}{2}\)
* Ta có : \(\frac{x}{8}=\frac{-3}{2}\)
\(\Rightarrow x\cdot2=-3\cdot8\)
\(\Rightarrow x=\frac{-3\cdot8}{2}=-12\)
* Ta có : \(\frac{-30}{y}=\frac{-3}{2}\)
\(\Rightarrow-30\cdot2=-3\cdot y\)
\(\Rightarrow y=\frac{-30\cdot2}{-3}=20\)
Mấy bài kia làm tương tự
\(a)\frac{x}{4}=\frac{-15}{y}=\frac{z}{52}=\frac{-32}{64}\)
Rút gọn phân số : \(\frac{-32}{64}=\frac{-32:32}{64:32}=\frac{-1}{2}\)
* Ta có : \(\frac{x}{4}=\frac{-1}{2}\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=(-4):2=-2\)
* Ta có : \(\frac{-15}{y}=\frac{-1}{2}\)
\(\Rightarrow(-1)\cdot y=-30\)
\(\Rightarrow-y=-30\)
\(\Rightarrow y=30\)
* Ta có : \(\frac{z}{52}=\frac{-1}{2}\)
\(\Rightarrow2z=(-1)\cdot52\)
\(\Rightarrow2z=-52\)
\(\Rightarrow z=-26\)
b, Tương tự câu a
a, ta có \(\frac{x}{4}\)= \(\frac{-32}{64}\)=> \(\frac{x}{4}\)= \(\frac{-1}{2}\)=> x = -2
\(\frac{-15}{y}\) = \(\frac{-32}{64}\) => \(\frac{-15}{y}\) = \(\frac{-1}{2}\) => y = 30
\(\frac{z}{52}\) = \(\frac{-32}{64}\) => \(\frac{z}{52}\) = \(\frac{-1}{2}\) => z = -26
vậy x = -2 ; y = 30 ; z = -26
câu b làm tương tự câu a
Lời giải (lớp 7)
Theo t/c tỉ lệ thức: \(\frac{4+x}{7+y}=\frac{4}{7}\Leftrightarrow\frac{4+x}{4}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{4+x}{4}=\frac{7+y}{7}=\frac{7+4+x+y}{4+7}=\frac{22}{11}=2\)
Suy ra \(4+x=2.4=8\Rightarrow x=8-4=4\)
Suy ra \(7+y=2.7=14\Leftrightarrow y=7\)
Lời giải (lớp 6)
Từ đề bài suy ra: \(7\left(4+x\right)=4\left(7+y\right)\) và \(y=11-x\)
\(\Leftrightarrow7\left(4+x\right)=4\left(7+11-x\right)\)
\(\Leftrightarrow28+7x=4\left(18-x\right)\)
\(\Leftrightarrow28+7x=72-4x\)
\(\Leftrightarrow11x=44\Leftrightarrow x=4\)
Thay vào tìm y=)
4/8 =x/−10 =−7/y =z/−6
⇒-4/8 =x/−10 ⇒x=4·(−10)/8 =−5(1)
⇒−5/10 =−7/y ⇒y=−10·(−7)/−5 =−14(2)
⇒−7/14 =z/−6 ⇒z=−7·(−6)/−14 =−3(3)
Từ (1);(2);(3) . Ta có -4/8 =5/-10 =−7/14 =3/-6
\(\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-6}=\frac{-4}{8}\)
Ta có ;
\(\frac{x}{-10}=\frac{-4}{8}\Leftrightarrow\frac{8x}{-80}=\frac{40}{-80}\Leftrightarrow8x=40\Leftrightarrow x=5\)
\(\frac{-7}{y}=\frac{-4}{8}\Leftrightarrow\frac{-56}{8y}=\frac{-4y}{8y}\Leftrightarrow-56=-4y\Leftrightarrow y=14\)
\(\frac{z}{-6}=\frac{-4}{8}\Leftrightarrow\frac{8z}{-48}=\frac{24}{-48}\Leftrightarrow8z=24\Leftrightarrow x=3\)
a) \(\frac{-3}{x}=\frac{y}{2}\left(x\ne0\right)\)
\(\Leftrightarrow xy=-6\)
<=> x;y thuộc Ư (-6)={-6;-3;-2;-1;1;2;3;6}
Vậy (x;y)=(-6;1);(-2;3);(-3;2);(-1;6) và hoán vị của chúng
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}+\frac{y}{5}=\frac{x+y}{2+5}=\frac{35}{7}=5\)
\(\Leftrightarrow\hept{\begin{cases}x=2\cdot5=10\\y=5\cdot5=25\end{cases}}\)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Bài giải
\(x+2=7+y\) \(\Rightarrow\text{ }x-y=7-2=5\)
\(\frac{x}{3}=\frac{6}{y}=\frac{z}{10}\text{ }\Rightarrow\text{ }\frac{x}{3}=\frac{6}{z}=\frac{y}{10}=\frac{x-y}{3-10}=\frac{5}{-7}\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\text{ }x=\frac{5}{-7}\cdot3=\frac{15}{-7}\)
\(y=\frac{5}{-7}\cdot10=\frac{50}{-7}\)
\(z=6\text{ : }\frac{5}{-7}=-\frac{42}{5}\)
b) \(\frac{x}{4}=\frac{-5}{y}\)
=> \(x.y=4.\left(-5\right)\)
\(x.y=-20\)
Vì x,y \(\in Z\)
Do đó x,y \(\in\)Ư(20)
Mà Ư(20)= ( 1;2;4;5;10;20;-1;-2;-4;-5;-10;-20)
Ta cs bảng: