Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) ĐK : \(3-2x\ge0\forall x\Rightarrow x\le\frac{3}{2}\)
Khi đó : \(\left|\frac{1}{2}x\right|=3-2x\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=3\\\frac{3}{2}x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=2\end{cases}}\left(tm\right)\)
Vậy \(x\in\left\{\frac{6}{5};2\right\}\)
b) ĐK : \(3x+2\ge0\Rightarrow x\ge\frac{-2}{3}\)
Khi đó : \(\left|x-1\right|=3x+2\Leftrightarrow\orbr{\begin{cases}x-1=3x+2\\x-1=-3x-2\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=3\\4x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1,5\\x=-0,25\left(tm\right)\end{cases}}\)
Vậy x = -0,25
c) ĐKXĐ : \(x-12\ge0\Rightarrow x\ge12\)
Khi đó |5x| = x - 12
<=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\left(\text{loại}\right)\)
Vậy \(x\in\varnothing\)
d) ĐK : \(5x+1\ge0\Rightarrow x\ge-\frac{1}{5}\)
Khi đó \(\left|17-x\right|=5x+1\Leftrightarrow\orbr{\begin{cases}17-x=5x+1\\17-x=-5x-1\end{cases}}\Rightarrow\orbr{\begin{cases}6x=16\\-4x=18\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\left(tm\right)\\x=-4,5\left(\text{loại}\right)\end{cases}}\)
Vậy x = 8/3
Tóm lại : Cách làm là
|f(x)| = g(x)
ĐK : g(x) \(\ge0\)
=> \(\orbr{\begin{cases}f\left(x\right)=-g\left(x\right)\\f\left(x\right)=g\left(x\right)\end{cases}}\)
Bạn tự làm tiếp đi ak
vì: lx - 1,5l \(\ge\) 0
l2,5 - xl \(\ge\) 0
=> để lx - 1,5l + l2,5 - xl = 0
thì lx - 1,5l = 0 và l2,5 - xl = 0
lx - 1,5l = 0
=> x - 1,5 = 0 => x = 0 + 1,5 = 1,5
l2,5 - xl = 0
=> 2,5 - x = 0 => x = 2,5 - 0 = 2,5
=> \(x\in\phi\)
Sai thì thôi nhé!
a) \(f\left(-3\right)=\frac{2}{3}\times-3-\frac{1}{2}=-2-\frac{1}{2}=\frac{-4}{2}-\frac{1}{2}=\frac{-5}{2}\)
\(f\left(\frac{3}{4}\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\)
b) \(f\left(x\right)=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x-\frac{1}{2}=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x=1\Leftrightarrow x=1:\frac{2}{3}\Leftrightarrow x=1\times\frac{3}{2}\Leftrightarrow x=\frac{3}{2}\)
c)\(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\left(1\right)\)
\(A\left(\frac{3}{4};-\frac{1}{2}\right)\)
\(A\left(\frac{3}{4};\frac{-1}{2}\right)\Rightarrow\hept{\begin{cases}x_A=\frac{3}{4}\\y_A=\frac{-1}{2}\end{cases}}\)
Thay \(x_A=\frac{3}{4}\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\ne y_A\)
Vậy điểm A không thuộc đồ thì hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
\(B\left(0,5;-2\right)\)
\(B\left(0,5;-2\right)\Rightarrow\hept{\begin{cases}x_B=0,5\\y_B=-2\end{cases}}\)
Thay \(x_B=0,5\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times0,5-\frac{1}{2}=\frac{1}{3}-\frac{1}{2}=\frac{2}{6}-\frac{3}{6}=\frac{-1}{6}\ne y_B\)
Vậy điểm B không thuộc đồ thị hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
a) |x| = 0
<=> x = 0
b) |x| bé hơn hoặc bằng 3 và x thuộc Z
<=> x \(\in\){\(0;\pm1;\pm2;\pm3\)}
c) |x| = 4 và x > 0
<=> x = 4
d) | - x | = | - 2 |
<=> x = \(\pm2\)
e) |-x| = 1 va x > 0
<=> x = 1
f) |-x| = 0
<=> x = 0
g) |x| = | -3 |
<=> x = \(\pm3\)
Mình làm hết luôn r nha
h) |-x| = |-2|
\(|x+1|=x+1\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=x+1\\-x-1=x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}x-x=1-1\\-x-x=1+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}0x=0\forall x\\-2x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}\forall x\\x=-1\end{cases}}}}\)
Vậy pt đúng với mọi x
\(|x-2|=2-x\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=2-x\\-x+2=2-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x+x=2+2\\-x+x=2-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=4\\0x=0\end{cases}}}\)
PT đúng với mọi x