Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)^2>=0 và (y-1)^2>=0
=>C>=-10
Dấu = xảy ra khi x+1=0,y-1=0
=>x=-1,y=1
Vậy C=-10 khi x=-1,y=1
k cho mk nha
\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5
Áp dụng tính chất DTSBN ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)
x/1/2 = -30 => x = -15
y/1/3 = -30 => y = -10
z/1/5 = -30 => z = -6
TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)
x/1/2 = 30 => x = 15
y/1/3 = 30 => y = 10
z/1/5 = 30 => z= 6
a,
2x=3y=5z
=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
mà l x-2y l =5
=>x-2y=5 hoặc x-2y=-5
nếu x-2y=5
=>x/15=2y/20=x-2y/15-20=5/-5=-1
=>x=-15
=>y=-10
=>z=-6
nếu x-2y=-5
=>x/15=2y/20=x-2y=-5/-5=1
=>x=15
=>y=10
=>z=6
còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm ! đăng câu khác mik làm tiếp cho !
a) \(|2x-2,5|=|x-1,7|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-2,5=x-1,7\\2x-2,5=1,7-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-x=-1,7+2,5\\2x+x=1,7+2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{5}\\x=\frac{7}{5}\end{cases}}\)
Vậy ...
b) \(|x+1|-|\frac{1}{2}x-3|=0\)
\(\Leftrightarrow|x+1|=|\frac{1}{2}x-3|\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{1}{2}x-3\\x+1=3-\frac{1}{2}x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}x=-3-1\\x+\frac{1}{2}x=3-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=\frac{4}{3}\end{cases}}\)
Vậy ...
Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)
Khi đó x + y + z = 18
<=> 3k + 1 + 4k + 2 + 5k + 3 = 18
=> 12k + 6 = 18
=> 12k = 12
=> k = 1
=> x = 4 ; y = 6 ; z = 8
Bài giải
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)
\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)
\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)
a, \(x=\frac{10^{2015}\cdot7^{2016}}{2^{2015}\cdot35^{2016}}=\frac{2^{2015}\cdot5^{2015}\cdot7^{2016}}{2^{2015}\cdot5^{2016}\cdot7^{2016}}=\frac{1}{5}\)
b, \(x+2\)có ngoặc không vậy?
Nếu có: \(\frac{5^{x+2}}{25}=125\Rightarrow5^{x+2}=125\cdot25=3125=5^5\Rightarrow x+2=5\Rightarrow x=3\)
c, \(\left(\frac{3}{5}\right)^4\cdot\left(\frac{5}{3}\right)^3=\left(\frac{3}{5}\right)^3\cdot\left(\frac{5}{3}\right)^3\cdot\frac{3}{5}=\left(\frac{3}{5}\cdot\frac{5}{3}\right)^3\cdot\frac{3}{5}=1^3\cdot\frac{3}{5}=\frac{3}{5}\)
d, \(2\cdot x+7\)có ngoặc không vậy?
Nếu có: \(19\cdot5^{2\cdot x+7}=475\Rightarrow5^{2\cdot x+7}=\frac{475}{19}=25=5^2\Rightarrow2\cdot x+7=2\Rightarrow2\cdot x=-5\Rightarrow x=-\frac{5}{2}\)
e, Áp dụng tính chất dãy tỉ số bằng nhau
\(\Rightarrow\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{x+2+y-3-z}{7+5-3}=\frac{-17-1}{9}=\frac{-18}{9}=2\)
\(\Rightarrow x+2=2\cdot7=14\Rightarrow x=12,y-3=2\cdot5=10\Rightarrow y=13,z=2\cdot3=6\)
Có ghi thiếu đề k v ?
cho mk hỏi: viết hỗn số tk nào vậy