K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2020

Có: \(x^5+y^2=xy^2+1\)

<=> \(x^5-1=y^2\left(x-1\right)\)(1)

TH1: x = 1 

=> \(1^2+y^2=1.y^2+1\) đúng với mọi y

TH2: \(x\ne1\)

(1) <=> \(y^2=x^4+x^3+x^2+x+1\)

<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)

Có:

+)  \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)

\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)

=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)

+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)

=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)

<=> x = 0 

=> \(y=\pm1\)

TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)

<=> \(2x+3-x^2=0\)

<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Với x = -1 => \(y=\pm1\)

Với x = 3 => \(y=\pm11\)

Kết luận:...

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

4 tháng 10 2018

\(x^5+y^2=xy^2+1\)

\(\Rightarrow x^5+y^2-xy^2-1=0\)

\(\Leftrightarrow\left(x^5-1\right)-\left(xy^2-y^2\right)=0\)

\(\Leftrightarrow\text{ }\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)-y^2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1-y^2\right)=0\)

4 tháng 10 2018

cảm ơn bạn Nguyễn Xuân Anh nha

\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)

\(3x-1⋮x^2-x+1\)

zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)

zà thấy x=2 thỏa mãn ,=> x=1

thay zô 1 ta có

\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)

25 tháng 2 2018

\(PT\Leftrightarrow x^4+y^3-xy^3-1=0\)

\(\Leftrightarrow\left(x^4-1\right)+\left(y^3-xy^3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1\right)-y^3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1-y^3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x^3+x^2+x+1=y^3\end{cases}}\)

TH1 : \(x=1\Rightarrow y\in Z\)

TH2 : \(x^3+x^2+x+1=y^3\)

Ta có : \(x^3< x^3+x^2+x+1< x^3+3x^2+3x+1\)

\(\Leftrightarrow x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3+x^2+x+1\notin Z\) hay \(y\notin Z\) (loại)

Vậy \(x=1\) và \(y\in Z\)