Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 .
A = 13 + 23 + 33 + ... + 1003
= 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100
= ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )
= ( 1 + 2 + 3 + .... + 100 )3
Do đó A \(⋮\)1 + 2 + 3 + ... + 100
Câu 2 :
+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)
Do đó 2100 có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751 ( 1)
+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)
Do đó 2100 có 3 chữ số tận cùng chia hết cho 8 ( 2)
Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376
Mà \(376\equiv1\left(mod125\right)\)
=> 2100 chia 125 dư 1
Vậy 2100 chia 125 có số dư là 1
Hok tốt
# owe
Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)
=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0
=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)
=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca
=> a2 + b2 + c2 \(\le\)2(ab + bc + ca)
Dấu "=" xảy ra <=> a + b + c = 0
Xí bài 2 ý a) trước :>
4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0
<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào T ta được :
\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)
\(T=0+1+1=2\)
Đề là:
\(x^{n+3}y^4:x^7y^n\) hay \(x^{n+3}y^4:\left(x^7y^n\right)\)vậy bạn?
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Để phép chia \(x^{n+2}y^3\div x^5y^n\) thực hiện được thì:
\(\Rightarrow\hept{\begin{cases}n+2\ge5\\3\ge n\end{cases}}\Leftrightarrow\hept{\begin{cases}n\ge3\\3\ge n\end{cases}}\)
Dấu "=" xảy ra khi: n = 3
Vậy n = 3