K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

2n - 3 chia hết cho n + 1

=> 2(n+1) - 5 chia hết cho n + 1

=> 5 chia hết cho n + 1 

=> n + 1 thuộc Ư(5) = { -5 ; -1; 1 ; 5 }

n+1-5-115
n-6-204

Theo bài ra ta có 

\(2x-3⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow-5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng 

n + 11-15-5
n0-24-6

Tìm x thuộc Z để A thuộc Z nha mn :)

19 tháng 2 2020

Để \(A\inℤ\) thì \(2A\inℤ\)

Ta có: \(2A=\frac{2\left(x-1\right)}{2x+3}=\frac{2x-2}{2x+3}=\frac{2x+3-5}{2x+3}=1-\frac{5}{2x+3}\)

Vì \(1\inℤ\)\(\Rightarrow\) Để \(2A\inℤ\)thì \(5⋮2x+3\)

\(\Rightarrow2x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng giá trị ta có: 

\(2x+3\)\(-5\)\(-1\)\(1\)\(5\)
\(2x\)\(-8\)\(-4\)\(-2\)\(2\)
\(x\)\(-4\)\(-2\)\(-1\)\(1\)

Thay các giá trị của x vào A ta thấy tất cả đều thoả mãn \(A\inℤ\)

Vậy \(x\in\left\{-4;-2;-1;1\right\}\)

31 tháng 5 2018

Bài 1: 

a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)

Để A có giá trị nguyên

\(\Rightarrow\frac{5}{n-3}\in z\)

\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)

nếu n-3 = 5 => n = 8 (TM)

n-3 = -5 => n= -2 (TM)

n-3 = 1 => n = 4 (TM)

n-3 = -1 => n = 2 (TM)

KL: \(n\in\left(8;-2;4;2\right)\)

b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)

Để A đạt giá trị lớn nhất

=>  \(\frac{5}{n-3}\le5\)

Dấu "=" xảy ra khi

\(\frac{5}{n-3}=5\)

\(\Rightarrow n-3=5:5\)

\(n-3=1\)

\(n=4\)

KL: n =4 để A đạt giá trị lớn nhất

Bài 2 bn làm tương tự nha!

25 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)

\(\Rightarrow n+1=50\)

\(\Rightarrow n=49\)

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)

\(\Rightarrow2n+1=51\)

\(\Rightarrow2n=50\)

\(\Rightarrow n=25\)

5 tháng 12 2019

Ta có: P = \(\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

Để P \(\in\)Z <=> 1 \(⋮\)n - 1

=> n - 1 \(\in\)Ư(1) = {1; -1}

=> n \(\in\){2; 0}

Vậy ...

5 tháng 12 2019

\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

Vì \(2\inℤ\)\(\Rightarrow\)Để \(P\inℤ\)thì \(\frac{1}{n+1}\inℤ\)

\(\Rightarrow1⋮\left(n-1\right)\)\(\Rightarrow n-1\inƯ\left(1\right)=\pm1\)\(\Rightarrow n\in\left\{0;2\right\}\)

Vậy \(n\in\left\{0;2\right\}\)

1 tháng 7 2019

Q nguyên khi : 

3|n| + 1 ⋮ 3|n| + 1 

=> 3|n| - 1 + 2 ⋮ 3|n| + 1

=> 2 ⋮ 3|n| + 1

=> 3|n| + 1 thuộc Ư(2) mà n là số nguyên

=> 3|n| + 1 thuộc {-1; 1; -2; 2}

=> 3|n| thuộc {-2; 0; -3; 1}

=> |n| thuộc {0; -1} vì |n| > 0

=> n = 0

vậy_

7 tháng 7 2019

n là số tự nhiên nên n có 3 dạng : \(3k+1;3h+2;3l\left(k;h;l\in N\right)\)

\(2005\equiv1\left(mod3\right)\Rightarrow2005^n\equiv1\left(mod3\right)\)=> \(2005^n\)luôn chia 3 dư 1 với mọi số tự nhiên n

+>\(n=3k:n^{2005}⋮3;2005.n⋮3\Rightarrow2005^n+n^{2005}+2005.n⋮3\)dư 1 ( loại )

+>\(n=3k+1:n\equiv1\left(mod3\right)\Leftrightarrow n^{2005}\equiv1\left(mod3\right);2005\equiv1\left(mod3\right)\Leftrightarrow2005.n\equiv1.1=1\left(mod3\right)\)

\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+1+1=3\left(mod3\right);3⋮3\Rightarrow A⋮3\)( hợp lý -> chọn )

+>\(n=3k+2\Rightarrow n\equiv-1\left(mod3\right)\Leftrightarrow n^{2005}\equiv-1\left(mod3\right);2005\equiv1\left(mod3\right)\Rightarrow2005.n\equiv1.-1=-1\left(mod3\right)\)

\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+\left(-1\right)+\left(-1\right)=-1\left(mod3\right)\Leftrightarrow A⋮̸3\)( loại )

Vậy n là tất cả các số tự nhiên chia 3 dư 1.

Đỗ Đức Lợi làm thiếu rồi :))

\(A=2005^n+n^{2005}+2005.n⋮3\)

Ta có \(2005\)ko chia hết 3 vì 2005 chia 3 dư 1

=>2005n=3k+1(k\(\in N\))

Xét +) n=3k ta có A =2005n+n2005.n

A=(3k+1+3k+3k):3 dư 1 

=> loại n=3k

+)n=3k+1 ta có A=3k+1+3k+1+3k+1

A=9k+3

A=3(k+1) \(⋮\)3

+)n=3 k+2 Ta có :

A=3k+1+3k+2+3k+2

A=9k +5 :3 dư 2

=>n=3k+2 ( loại )

Với n=3k+1 thì A=3(k+1) chia hết cho 3

1 tháng 8 2020

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

=\(3^{n+1}.2.5+2^{n+2}.3\)=\(2.3\left(3^n+2^{n+1}\right)⋮6\)

=> dpcm

1 tháng 8 2020

a) A = 2 + 22 + 23 + ... + 2100

=> 2A = 22 + 23 + 24 + ... + 2101

Lấy 2A trừ A theo vế ta có 

2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)

  => A = 2201 - 2

Sửa đề 2(A + 2) = 22x

=> 2(2201 - 2 + 2) = 22x

=> 2202 = 22x

=> (22)101 = (22)x

=> x = 101