\(\sqrt{2x^2-2x+m}=x+1\) có nghiệm

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2021

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\2x^2-2x+m=\left(x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\-x^2+4x+1=m\end{matrix}\right.\)

Xét hàm \(f\left(x\right)=-x^2+4x+1\) với \(x\ge-1\)

\(-\dfrac{b}{2a}=2>-1\) ; \(f\left(-1\right)=-4\) ; \(f\left(2\right)=5\)

\(\Rightarrow f\left(x\right)\le5\) ;\(\forall x\ge-1\)

\(\Rightarrow\) Pt đã cho có nghiệm khi \(m\le5\)

13 tháng 8 2016

Điều kiện xác định : \(\begin{cases}2x-4\ge0\\x-m\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ge2\\x\ge m\end{cases}\) \(\Leftrightarrow x\ge m\ge2\)

Bình phương hai vế : \(4\left(x-2\right)^2=9\left(x-m\right)\Leftrightarrow4\left(x^2-4x+4\right)=9x-9m\)

\(\Leftrightarrow4x^2-25x+\left(16+9m\right)=0\)

Để pt có nghiệm thì \(\Delta=25^2-4.4.\left(16+9m\right)\ge0\)

\(\Leftrightarrow m\le\frac{41}{16}\)

Vậy để pt có nghiệm thì \(2\le m\le\frac{41}{16}\)

29 tháng 7 2016

a) \(x+\sqrt{3x^2+1}=m\)

<=> \(\sqrt{3x^2+1}=m-x\)

ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)

<=> \(m\ge x\)

NV
23 tháng 10 2020

\(x\ge-1\)

Khi đó pt tương đương:

\(2x^2-2x+m=\left(x+1\right)^2\)

\(\Leftrightarrow m=-x^2+4x+1\)

Xét hàm \(f\left(x\right)=-x^2+4x+1\) với \(x\ge-1\)

\(-\frac{b}{2a}=2\) ; \(f\left(-1\right)=-4\) ; \(f\left(2\right)=5\)

\(\Rightarrow f\left(x\right)\le5\) ; \(\forall x\ge-1\)

Vậy pt có nghiệm khi và chỉ khi \(m\le5\)

Bài 1:

\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)

=>-2x+3m-4+20x-25=0

=>18x+3m-29=0

Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)

=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)

=>4-48m+64<=0

=>-48m+68<=0

=>-48m<=-68

=>m>=17/12

30 tháng 12 2015

Đặt \(a=\sqrt{2x+1},b=\sqrt{1+\sqrt{x+3}}\) thì

\(a^2-1+a=b^2-1+b\Leftrightarrow a^2-b^2+a-b=0\Leftrightarrow(a-b)(a+b+1)=0\Leftrightarrow a=b\)

Vậy

\(\sqrt{2x+1}=\sqrt{1+\sqrt{x+3}}\Leftrightarrow 2x=\sqrt{x+3}\)

29 tháng 12 2015

khó nhỉ

Câu 1: 

a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+49-2x-1=0\\x< =7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-16x+48=0\\x< =7\end{matrix}\right.\Leftrightarrow x=4\)

Câu 2: 

\(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot4=4m^2-16\)

Để phương trình có hai nghiệm thì (m-2)(m+2)>=0

=>m>=2 hoặc m<=-2

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+x_2^2+2x_1+2x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4m^2+4m-8=0\)

=>(m+2)(m-1)=0

=>m=-2(nhận) hoặc m=1(loại)