Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)^2>=0 và (y-1)^2>=0
=>C>=-10
Dấu = xảy ra khi x+1=0,y-1=0
=>x=-1,y=1
Vậy C=-10 khi x=-1,y=1
k cho mk nha
a)\(A=x^2-1\)
\(Nx:\)\(x^2\ge0\)
\(\Rightarrow A_{Min}=0-1=-1\Leftrightarrow x=0\)
b) \(B=x^2-2x+3\)
\(=x\left(x-2\right)+3\)
\(Nx:x\left(x-2\right)\ge0\)
\(\Rightarrow B_{Min}=3\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow x=0\)
c) \(C=\left|2x+1\right|-5\)
\(Nx:\left|2x+1\right|\ge0\Rightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
\(\Rightarrow C_{Min}=-5\Leftrightarrow x=\frac{-1}{2}\)
d) \(D=3x^2+6x-7\)
\(=3\left(x^2+2x\right)-7\)
\(Nx:Min_{x^2+2x}=-1\Leftrightarrow x=-1\)
\(D_{Min}=-8\Leftrightarrow x=-1\)
Phương pháp tách cho dẽ hiểu
*nghiệm x=-3 và x=-4
chia khoảng
* x<=-4=> A=-2x-6-2x-8=-4x-14 => GTNN A=A(-4)=16-14=2
*-4<=x<=-3=>A=-2x-6+2x+8=8-6=2 A hs
*x>=-3=>A=2x+6+2x+8=4x+14 A nho nhất khi x=-3=> GTNNA=-3.4+14=2
* kết luận GTNN của A la 2
Khi -4<=x<=3
dùng bất đẳng thức trị tuyệt đối không biết bạn có hiểu ko?
!a!+!b!>=!a+b! đẳng thức xẩy ra khi a,b khác dâu" nếu hiểu áp vào ra ngay.
bài làm mang tính chất hướng dẫn nên lời giải nhớ ghi đầy đủ vào nhé :))
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
\(\Leftrightarrow\)\(12=6x\)\(\Leftrightarrow\)\(x=2\)
Có \(\frac{3y-2}{7}=\frac{2x+1}{5}=\frac{2.2+1}{5}=1\)\(\Leftrightarrow\)\(3y-2=7\)\(\Leftrightarrow\)\(y=3\)
Vậy \(x=2\) và \(y=3\)
giải hơi bị nhìu r -,-
A B C D M N P Q
- Câu a:
- Xét tam giác ABC. Ta có \(\hept{\begin{cases}\text{M là trung điểm AB}\\\text{N là trung điểm BC}\end{cases}\Rightarrow}\)MN là đường trung bình của tam giác ABC
- Do đó: \(\hept{\begin{cases}MN//AC\\MN=\frac{1}{2}AC\end{cases}}\)(1)
- Xét tam giác ADC. Ta có \(\hept{\begin{cases}\text{Q là trung điểm AD}\\\text{P là trung điểm CD}\end{cases}\Rightarrow}\)QP là đường trung bình tam giác ADC
- Do đó: \(\hept{\begin{cases}PQ//AC\\PQ=\frac{1}{2}AC\end{cases}}\)(2)
- Từ (1) và (2) => Tứ giác MNQP là hình bình hành ( 2 cạnh song song và bằng nhau)
áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}\)
\(=\frac{2x+1+3y-2}{12}=\frac{2x+3y-1}{12}\)
\(\text{Suy ra: }\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\Rightarrow6x=12\Rightarrow x=2\)
=>\(\frac{2.2+1}{5}=\frac{3y-2}{7}\Rightarrow1=\frac{3y-2}{7}\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
Vậy x=2;y=3
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\left(2\right)\)
Từ (1) và (2) => 6x = 12 => x = 2
Thay x = 2 => \(\frac{2x+1}{5}=\frac{2.2+1}{5}=4+15=1\)
\(\frac{3y-2}{7}=1\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
Vậy x = 2 ; y = 3