Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|\left|3x-3\right|+2x+\left(-1\right)^{2016}\right|\ge0\forall x\)
\(\Rightarrow3x+2017^0\ge0\Rightarrow x\ge-\frac{1}{3}\)
Khi đó: \(\left|\left|3x-3\right|+2x+1\right|=3x+1\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|+2x+1=3x+1\\\left|3x-3\right|+2x+1=-3x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=x\\\left|3x-x\right|=-5x-2\end{cases}}\)
Để |3x - 3| = x => \(x\ge0\)
=> \(\orbr{\begin{cases}3x-3=x\\3x-3=-x\end{cases}\Rightarrow\orbr{\begin{cases}2x=3\\4x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\left(tm\right)\\x=\frac{3}{4}\left(tm\right)\end{cases}}}\)
Để |3x - 3| = - 5x - 2
=> \(-5x-2\ge0\Rightarrow x\le-\frac{2}{5}\)
=> \(\orbr{\begin{cases}3x-3=5x+2\\3x-3=-5x-2\end{cases}\Rightarrow\orbr{\begin{cases}-2x=5\\8x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{5}{2}\left(\text{tm}\right)\\x=\frac{1}{8}\left(\text{loại}\right)\end{cases}}}\)
Vậy \(x\in\left\{\frac{-5}{2};\frac{3}{2};\frac{3}{4}\right\}\)
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Giả theo cách lớp 7 nha:
Đặt \(\hept{\begin{cases}\sqrt{6-x}=a\\\sqrt{x+2}=b\end{cases}}\)
\(\Rightarrow a^2+b^2=8\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow2ab\le a^2+b^2\)
\(\Leftrightarrow a^2+b^2+2ab\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\cdot8=16\)
\(\Leftrightarrow a+b\le4\)
Dấu = xảy ra khi \(a=b=2\)
\(\Leftrightarrow x=2\)
\(ĐKXĐ:-2\le x\le6\)
Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\le\sqrt{2.\left(a+b\right)}\) với \(a,b\ge0\) ta có :
\(y=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{2.\left(6-x+x+2\right)}=\sqrt{2.8}=4\)
Dấu "=" xảy ra \(\Leftrightarrow6-x=x+2\Leftrightarrow x=2\)
Vậy \(y_{min}=4\) khi \(x=2\)