Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=-x^2-8x+5\)
\(=-x^2-8x-16+21\)
\(=-\left(x^2+8x+16\right)+21\)
\(=21-\left(x+4\right)^2\)
\(\left(x+4\right)^2\ge0\)
\(-\left(x+4\right)^2\le0\)
\(21-\left(x+4\right)^2\le21\)
\(P_{max}=21\Leftrightarrow x=-4\)
\(B=\frac{x^2+y^2+3}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\)
VÌ\(x^2\ge0;y^2\ge0\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)\(\Rightarrow\frac{1}{x^2+y^2+2}\le\frac{1}{2}\Rightarrow B=1+\frac{1}{x^2+y^2+2}\le1+\frac{1}{2}=\frac{3}{2}\)
\(B=\frac{3}{2}\Leftrightarrow\hept{\begin{cases}x^2=0\\y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Vậy: \(maxB=\frac{3}{2}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
x^2+y^2+3 1
B=------------------= 1+ ------------------
x^2+y^2+2 x^2+y^2+2
Để B lớn nhất thì 1/x^2+y^2+2 là số nguyên dương lớn nhất
=>M=x^2+y^2+2 là số nguyên dương bé nhất =1
=> x^2+y^2+2=1
=> x^2+y^2=-1
=>1/x^2+y^2+2=1/2-1=1(lớn nhất)
Vậy giá trị lớn nhất của B là:
B=1+1=2
A = -\(x^2\) - 0,75
\(x^2\) ≥ 0 ∀ \(x\) ⇒ -\(x^2\) ≤ 0 ⇒ - \(x^2\) - 0,75 ≤ -0,75
Amax = -0,75 ⇔ \(x\) = 0
Do x² ≥ 0 với mọi x ∈ R
⇒ -x² ≤ 0 với mọi x ∈ R
⇒ -x² - 0,75 ≤ -0,75 với mọi x ∈ R
Vậy GTLN của A là -0,75 khi x = 0