Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (a-b)2 \(\ge\)0 \(\forall\)a,b\(\Rightarrow\)a2+b2 \(\ge\)2ab. Mà ab=4\(\Rightarrow\)a2+b2 \(\ge\)8.
\(\Rightarrow\)P=\(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)\(\ge\)\(\frac{\left(a+b-2\right).8}{a+b}\)
Đặt t=a+b\(\Rightarrow\)t\(\ge\)4 (Do a+b \(\ge\)2\(\sqrt{ab}\)= 4)
\(\Rightarrow\)P=\(\frac{\left(t-2\right).8}{t}\) = \(\frac{8t-16}{t}\)=\(8-\frac{16}{t}\)
Vì t\(\ge\)4 \(\Rightarrow\)\(\frac{16}{t}\le\frac{16}{4}=4\)\(\Rightarrow-\frac{16}{t}\ge-4\)\(\Rightarrow\left(8-\frac{16}{t}\right)\ge8-4=4\)
\(\Rightarrow P\ge4.\)Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\a.b=4\end{cases}\Leftrightarrow a=b=2}\)
Vậy P min = 4 \(\Leftrightarrow\)a=b=2.
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1-\left(\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{x^2y^2}\right)=1-\frac{x^2+y^2-1}{x^2y^2}\)
\(B=1-\frac{\left(x+y\right)^2-2xy-1}{x^2y^2}=1-\frac{-2xy}{x^2y^2}=1+\frac{2}{xy}\)
Cô-si : \(1=x+y\ge2\sqrt{xy}\Leftrightarrow xy\le\frac{1}{4}\)
\(\Rightarrow B\ge1+\frac{2}{\frac{1}{4}}=9\)
Vậy B có GTNN bằng 9 khi x = y = \(\frac{1}{2}\)
1)
\(2x^2-2xy+5y^2-2x-2y+1=0.\)
\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(x^2-4xy+4y^2\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(2y-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\2y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1}{3}\\x=\frac{2}{3}\end{cases}}}\)