Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)
\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)
\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)
Thay vào ta tính được a và b
b,c tương tự a
a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)
\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)
\(a.b.c=\frac{3}{5}\)
\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)
b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)
\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)
Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5
Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5
c,ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a:
ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= 2*3 = 6 (thỏa)
_Với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= -2*3 = -6 (thỏa)
_Với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102
=1+0+0+....+102=103
b) |1-2x|>7
=> 1-2x>7 hoặc 1-2x<-7
=> 2x<-6 hoặc 2x>8
=> x<-3 hoặc x>4
1
a.=>x-2<0=>x<2
b.=>3x+6<0=>3x<-6=>x<-2
Chúc bạn học tốt ! ^_^
1, 4x = 5y <=> 4x - 5y = 0 (1)
Mà: x -2y = -5 <=> 4x - 8y = -20 (2)
Trừ (1) cho (2) ta có: 4x - 5y - 4x + 8y = 0 - (-20)
<=> 3y = 20 <=> y = \(\frac{20}{3}\)
=> x =\(\frac{25}{3}\)
2, \(ad=bc\)\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(dpcm\right)\)
3, \(\frac{x^2}{6}=\frac{24}{25}\Leftrightarrow25x^2=24\times6\Leftrightarrow25x^2=144\Leftrightarrow x^2=\frac{144}{25}\Leftrightarrow\orbr{\begin{cases}x=-\frac{12}{5}\\x=\frac{12}{5}\end{cases}}\)
1)
4x=5y va x-2y=-5
ta co 4x=5y suy ra x/5=y/4
theo t/c cua ti le thuc ta co
x/5=y/4=x-2y/5-8=-5/-3=5/3
do do
x=25/3
y=20/3
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
a, x/2-2/5=1/10
x/2=1/10+2/5
x/2=1/2
Suy ra x=1
b, 2/3.(x-3/y)=1/21
x-3/y=1/21:2/3
x-3/y=1/14
Vi 7.2=14
Suy ra (x-3).2=1
x-3=1:2
x-3=0,5
x=0,5+3
x=3,5
c, Vi 3/x+y/3=5/6
Suy ra x+3=6
x=3
Vi x=3
Suy ra 3+y=5
Suy ra y=2
Nho ****
b)Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)
\(a^5-a=a\left(a^4-1\right)\)
\(=a\left(a^2+1\right)\left(a^2-1\right)\)
\(=a\left(a^2+1\right)\left(a-1\right)\left(a+1\right)\)
\(=a\left(a^2-4+5\right)\left(a-1\right)\left(a+1\right)\)
\(=a\left(a^2-4\right)\left(a-1\right)\left(a+1\right)+5a\left(a+1\right)\left(a-1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)
Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a^5-a⋮5\)
--> \(a^2b^2c^2\)= \(\frac{2}{5}\).\(\frac{3}{7}\).\(\frac{10}{21}\)=\(\frac{4}{49}\)--> \(abc\)=\(\sqrt{\frac{4}{49}}=\frac{2}{7}\)
--> \(c=\frac{2}{7}:\frac{2}{5}=\frac{5}{7}\)-->\(a=\frac{2}{3}\)-->\(b=\frac{3}{5}\)