Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\cdot\left(n+2\right)}<\frac{2003}{2004}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}<\frac{2003}{2004}\)
\(\Rightarrow1-\frac{1}{n+2}<\frac{2003}{2004}\)
\(\Rightarrow\frac{1}{n+2}>\frac{1}{2004}\)
\(\Rightarrow n+2<2004\)
\(\Rightarrow n=2002\)
Đặt A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
A=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
A = \(1-\frac{1}{n+2}\)
A= \(\frac{n+1}{n+2}\)=> Để A<2003/2004 thì \(\left(n+1\right).2004< \left(n+2\right).2003\)
\(\Leftrightarrow2004n+2004< 2003n+4006\)
\(\Leftrightarrow n< 2002\)
1/1-1/3+1/3-1/5+1/5-1/7+....+1/n-1/(n+2)
=1-1/(n+2)=(n+1)/(n+2)
Suy ra n =2001
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{n\left(n+2\right)}< \frac{2003}{2004}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{n}+\frac{1}{n+2}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{n+2}\right)\)
\(=\frac{1}{2}\left(\frac{n+2}{n+2}-\frac{1}{n+2}\right)\)
\(=\frac{1}{2}.\frac{n+1}{n+2}\)
\(=\frac{n+1}{2\left(n+2\right)}< \frac{2003}{2004}\)
\(\Leftrightarrow\hept{\begin{cases}n+1< 2003\\2\left(n+2\right)< 2004\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n< 2002\\\left(n+2\right)< 1002\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n< 2002\\n< 1000\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n+1=2002\\2\left(n+2\right)=1000\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n=2001\\n=498\end{cases}}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\)
\(=\frac{1}{2}\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{n}-\frac{2}{n+2}\right)\)
\(=\frac{1}{2}\left(2-\frac{2}{n+2}\right)=\frac{1}{2}\cdot\frac{2n+2}{n+2}=\frac{n+1}{n+2}< \frac{2003}{2004}\)
\(\Rightarrow\hept{\begin{cases}n+1=2002\\n+2=2003\end{cases}}\Leftrightarrow n=2001\)
<=>2-2/3+2/3-2/5........+2n-2n+2<2015/2016
<=>2-2n+2<2015/2016
=>n+2=1/2016
=>n=2014
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{n\left(n+2\right)}\)<\(\frac{2015}{2016}\)
VT=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{5}-\frac{1}{n+2}\)=\(1-\frac{1}{n+2}\)
Ta có:\(1-\frac{1}{n+2}=\frac{2015}{2016}\Rightarrow\)\(\frac{1}{n+2}=1-\frac{2015}{2016}\)
\(\Rightarrow\)\(\frac{1}{n+2}=\frac{1}{2016}=n+2=2016\)
\(\Rightarrow\)\(n=2014\)
Vậy\(n=2014\)
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{5}{36}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\right)=\frac{5}{36}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{18}\)
\(\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)
\(\frac{1}{n+2}=\frac{1}{18}\)
\(\Rightarrow n+2=18\Rightarrow n=16\)
\(\Rightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}=\frac{10}{36}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{18}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)
\(\Rightarrow\frac{n+2-3}{3\left(n+2\right)}=\frac{5}{18}\)
\(\Rightarrow\frac{n-1}{3n+6}=\frac{5}{18}\)
\(\Rightarrow18\left(n-1\right)=5\left(3n+6\right)\)
\(\Rightarrow18n-18=15n+30\)
\(\Rightarrow3n=48\)
\(\Rightarrow n=48:3\)
=>n=16
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x(x+2)}=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x(x+2)}\right]=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right]=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}\left[1-\frac{1}{x+2}\right]=\frac{20}{41}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{41}\Leftrightarrow x+2=41\Leftrightarrow x=39\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}.\)
\(1-\frac{1}{x+2}=\frac{20}{41}\Rightarrow\frac{1}{x+2}=\frac{21}{41}=\frac{21}{21x+42}\Rightarrow21x+42=41\Rightarrow x=-\frac{1}{21}\)