K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2015

Theo đề bài ta có: me= 9,10-31 (kg); h= 6,625.10-34\(\pi=3,14\) ;sai số tọa độ theo phương x là : \(\Delta x=\text{1Ǻ}=10^{-10}\left(m\right)\)

Hệ thức bất định Heisenberg ta có: \(\Delta x.\Delta p_x\ge\frac{h}{2.\pi}\)

Vậy thay số ta có độ bất định về động lượng của electron theo phương x xác định là : \(\Delta p_x=\frac{h}{2.\pi.\Delta x}=\frac{6,6.25.10^{-34}}{2.3,14.10^{-10}}=1,055.10^{-24}\left(kg.m.s^{-1}\right)\)

Mặt khác ta có: \(\Delta p_x=\Delta v_x.m=\Delta v_x.m_e\)

Suy ra ta có độ bất định về tốc độ của electron theo phương x là:   \(\Delta v_x=\frac{\Delta p_x}{m_e}=\frac{1,055.10^{-24}}{9,1.10^{-31}}=1159270\left(m.s^{-1}\right)\approx1,16.10^6\left(m.s^{-1}\right)\)

 

 

21 tháng 1 2015

theo bài ta có: \(\Delta x=1\text{Ǻ}=10^{-10}\left(m\right)\)

áp dụng hệ thức Heisenberg ta có: \(\Delta x.\Delta Px\ge\frac{h}{2\pi}\)

với \(\frac{h}{2\pi}=1,054.10^{-34}\)

\(\Rightarrow\Delta Px\ge\frac{h}{2\pi.\Delta x}=\frac{1,054.10^{-34}}{10^{-10}}=1,054.10^{-24}\left(kg.m.s^{-1}\right)\)

mặt khác ta lại có: \(\Delta Px=m.\Delta vx\Rightarrow\Delta vx=\frac{\Delta Px}{m}=\frac{1,054.10^{-24}}{9,1.10^{-31}}=1,16.10^6\left(\frac{m}{s}\right)\)

21 tháng 12 2014

Mà \(\Delta\)px.\(\Delta\)x=m.\(\Delta\)Vx.\(\Delta\)=\(\frac{h}{2\pi}\)

=> \(\Delta\)x = \(\frac{6.625.10^{-34}}{2\pi.10^6.9,1.10^{-31}}\)=1,16.10-10

8 tháng 3 2016

nO2=a(mol)

nO3=b(mol)
\(\text{⇒Σ}\) số mol hỗn hợp ban đầu=a+b(mol)
2O3  --UV-->  3O2
Theo pt: \(\Sigma\) số mol hh sau phản ứng=a+1,5b
Ta có:%V tăng lên \(=\frac{1,5b-b}{a+b}\).100%=2%
\(\Rightarrow\)a=24b
\(\Rightarrow\)%VO3=\(\frac{b}{24b+b}\).100%=4%
\(\Rightarrow\)%VO2=96%
20 tháng 1 2015

a) Ta có:   Mật độ xác suất tìm thấy electron trong vùng không gian xung quanh hạt nhân nguyên tử:

    D(r) = R2(r) . r2

             = 416/729 . a0-5 . r2 . (2 - r/3a0)2 . e-2r/3a0 . r2

           = 416/729 . a0-5 . (4r- 4r5/3a+ r6/9a02) .  e-2r/3a0

      Khảo sát hàm số D(r) thuộc r

          Xét:  d D(r)/ dr = 416/729 . a0-5 . [(16r3 - 20r4/3a0 + 2r5/3a02) .  e-2r/3a0  -  (4r- 4r5/3a+ r6/9a02) . 2/3a0  e-2r/3a0 ]

                          = 416/729 . a0-5 . e-2r/3a . r3 . (16a03 - 28r/3a0 + 14r2/9a02 - 2r3/27a03)

                          = 832/19683 . a0-8 e-2r/3a . r3 . (-r+21r2.a- 126r.a02 +216a03)

                          = - 832/19683 . a0-8 e-2r/3a . r3 . (r - 6a0).(r - 3a0).(r - 12a0)

           d D(r)/ dr = 0. Suy ra r =0; r =3a; r = 6a0; r = 12a0

           Với r = 0 : D(r) =0

                  r =3a: D(r) = 416/9 .a-1 . e-2

                  r =6a: D(r) = 0

                  r =12a: D(r) = 425984/9.a-1 . e-8

b) Ai vẽ câu này rồi cho   up lên với, cám ơn mọi người trước nhé!  

21 tháng 1 2015

a)Mật độ xác suất có mặt electron tỷ lệ với |R3P|2.r2

D(r)=|R3P|2.r2  =D (r)=\(\frac{416}{729}\) .a0-5.(2r2- \(\frac{r^3}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)

   Lấy đạo hàm của D theo r để khảo sát mật độ xác suất :

    D' (r)= \(\frac{416}{729}\) .a0-5.2.(2r2-\(\frac{r^3}{3a_0}\)).(4r-\(\frac{r^2}{a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)+\(\frac{416}{729}\) .a0-5.(2r2-\(\frac{r^3}{3a_0}\))2.(-\(\frac{2}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\) 

           =\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\). (2r2-\(\frac{r^3}{3a_0}\)) .[(4r-\(\frac{r^2}{a_0}\)).a0 -\(\frac{1}{3}\). (2r2-\(\frac{r^3}{3a_0}\))]

            =\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\).r3.(2- \(\frac{r}{3a_0}\)).(\(\frac{r^2}{9a_0}-\frac{5r}{3}+4a_0\))

=>D’(r)=0   => r=0 ,r=3a0 ,r=6a0 ,r=12a0.

Với:r=0      =>D(r)=0

       r=3a0  =>D(r)=0

       r=6a0  =>D(r)=\(\frac{416}{9a_0.e^2}\)

       r=12a0=>D(r)=\(\frac{425984}{a_0.e^8}\)

b)

12 tháng 1 2015

a) Ta có: \(\Delta\)P=m.\(\Delta\)v= 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)

AD nguyên lý bất định Heisenberg: \(\Delta\)x.\(\Delta\)Px\(\ge\)\(\frac{h}{2.\Pi}\) với \(\frac{h}{2.\Pi}\)= 1,054.10-34

Suy ra: \(\Delta\)\(\ge\)\(\frac{1,054.10^{-34}}{1,82.10^{-24}}\)= 5,79.10-11 m

b) \(\Delta\)\(\ge\)\(\frac{1,054.10^{-34}}{10^{-5}}\)= 1,054.10-29 (kg.m/s)

Suy ra:\(\Delta\)vx = 1,054.10-27 (m/s)

12 tháng 1 2015

AD nguyên lý bất định Heisenberg: Δx.ΔPx  h/(4.Π) với h=6,625.10-34

a)Ta có: ΔP=m.Δv= 9,1.10-31.2.106 = 1,82.10-24 (kg.m/s)

=> Δ 6,625.10-34/(4.1,82.10-24)= 2,8967.10-11  (m)

b) ΔPx = m. Δvx  h/(4.Π.Δx )    

=> m. Δvx   6,625.10-34/(4.10-5) = 5,272.10-30

=> Δvx  5,272.10-30/0,01 = 5,272.10-28 (m/s)

 

13 tháng 1 2015

Ta có hệ thức De_Broglie: λ= h/m.chmc


Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv

a)     Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s

→ λ= 6,625.1034103.102=6,625.10-29 (m)

b)    Ta có m=1g=10-3kg và v =100 km/s=10m

→ λ= 6,625.1034103.105= 6,625.10-36 (m)

c)     Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg  và v= 1000m/s

→ λ= 6,625.10344,03.1000=9.97.10-11 (m)

13 tháng 1 2015

a) áp dụng công thức 

\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)

b)

\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)

c)

\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)

Áp dụng hệ thức bất định Heisenberg để tính độ bất định về vị trí cho trường hợp electron chuyển động trong nguyên tử với giả thiết Δvx = 106 m/s. Cho biết me = 9,1.10-31 kg; h = 6,625.10-34 J.s.Bài Giải:Ta có hệ thức Heisenberg là :\(\Delta p_x\).\(\Delta x\) \(\ge\frac{h}{2\pi}\)\(p_x\): là động lượng của electron chuyển động trong nguyên tử (kg.m/s)x: là tọa độ (m)Ta có :   \(\Delta...
Đọc tiếp

Áp dụng hệ thức bất định Heisenberg để tính độ bất định về vị trí cho trường hợp electron chuyển động trong nguyên tử với giả thiết Δvx = 106 m/s. Cho biết me = 9,1.10-31 kg; h = 6,625.10-34 J.s.

Bài Giải:

Ta có hệ thức Heisenberg là :

\(\Delta p_x\).\(\Delta x\) \(\ge\frac{h}{2\pi}\)

\(p_x\): là động lượng của electron chuyển động trong nguyên tử (kg.m/s)

x: là tọa độ (m)

Ta có :   \(\Delta p_x\).\(\Delta x\)  \(=m.\Delta x.\Delta v_{x_{ }}\)\(\le\frac{h}{2\pi}\)

Vậy vị trí của electron chuyển động trong nguyên tử được xác định là:   \(\Delta x\le\frac{h}{2.m.\pi.\Delta v_x}=\frac{6,625.10^{-34}}{2.\pi.10^6.9,1.10^{-31}}\approx1,2.10^{-10}\)(m)

hay là : \(1,2A^o\)

" Thưa thầy, đây là bài giải của em cho bài 2 trong phần cấu tạo chất. Trình bày bài như thế này có được không ạ? Thầy bổ sung cho em với ạ. "

35
18 tháng 12 2014

Thầy rất hoan nghênh bạn Thắng đã làm bài tập, cố gắng làm nhiều bài tập hơn nữa để được cộng điểm.

Bài giải của bạn đối với câu hỏi 2 ra kết quả đúng rồi, tuy nhiên cần lưu ý: khi tính độ bất định về vị trí hoặc vận tốc người ta sử dụng hệ thức bất định Heisenberg và thay dấu bất phương trình bằng dấu = để giải cho đơn giản nhé.

10 tháng 12 2017
B
21 tháng 1 2015

Xác suất tìm thấy vi hạt tính bằng công thức: P(b,c)= \(\int\limits^c_b\)\(\psi\)2dx

Thay ᴪ = sqrt(2/a).sin(ᴫx/a). Giải tích phân ta đươc: 

P(b,c)= \(\frac{c-b}{a}-\frac{1}{2\pi}\left(sin\frac{2\pi c}{a}-sin\frac{2\pi b}{a}\right)\)

a) x = 4,95 ÷ 5,05 nm

P(4.95;5.05)= \(\frac{0,1}{10}-\frac{1}{2\pi}\left(sin\frac{2\pi.5,05}{10}-sin\frac{2\pi.4,95}{10}\right)\)= 0.02

Tương tự với phần b, c ta tính được kết quả:

b) P= 0.0069

c)P=6,6.10-6


 

Ta có:Xác suất tìm thấy vi hạt là:

P(x1;x2)=\(\int\limits^{x_2}_{x_1}\Psi^2d_x\)=\(\int\limits^{x_2}_{x_1}\frac{2}{a}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(\frac{2}{a}.\int\limits^{x_2}_{x_1}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(-\frac{1}{2}.\frac{2}{a}\int\limits^{x_2}_{x_1}\left(1-2\sin^2\left(\frac{\pi}{a}.x\right)-1\right)d_x\)

=\(-\frac{1}{a}\int\limits^{x_2}_{x_1}\cos\left(\frac{2\pi}{a}.x\right)d_x+\frac{1}{a}\int\limits^{x_2}_{x_1}d_x\)=\(\frac{1}{a}\left(x_2-x_1-\frac{a}{2\pi}\left(\sin\left(\frac{2\pi}{a}.x_2\right)-\sin\left(\frac{2\pi}{a}.x_1\right)\right)\right)\)

a)x=4,95\(\div\)5,05nm

Xác suất tìm thấy vi hạt là:

P\(\left(4,95\div5,05\right)\)=\(\frac{1}{10}\left(5,05-4,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.5,05\right)-\sin\left(\frac{2\pi}{10}.4,95\right)\right)\right)\)=0,019

b)Xác suất tìm thấy vi hạt là:

P(1,95\(\div\)2,05)=\(\frac{1}{10}\left(2,05-1,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.2,05\right)-\sin\left(\frac{2\pi}{10}.1,95\right)\right)\right)\)=0,0069

c)Xác suất tìm thấy vi hạt là:

P(9,9\(\div\)10)=\(\frac{1}{10}\left(10-9,9-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.10\right)-\sin\left(\frac{2\pi}{10}.9,9\right)\right)\right)\)=6,57\(\times10^{-6}\)

24 tháng 12 2014

Bài này bạn Khánh làm chưa đúng đáp số, và đơn vị là cm-1 chứ không phải là (m).

Các bạn phải chú ý đổi đơn vị: Sau khi thay đơn vị giống của bạn Khánh thì đơn vị phải là: J.s2/kg.m3.

Mà chúng ta lại có: 1m2 = 1J.s2/kg

Nên đơn vị cuối cùng là: m-1, các bạn đem kết quả thu được chia cho 102 sẽ được đơn vị là cm-1.

23 tháng 12 2014

Trả lời : ta có chiều dài mạch liên kết a = (N+1) lC-C =3.1,4.10-10

Ta có :ELU-EHO =(22-12 ) .\(\frac{h2}{8ma^2}\)\(\frac{hc}{\lambda}\)=hcV (V là số sóng )

=> V = \(\frac{h.3}{8ma^2c}\)\(\frac{6,625.10^{-34}.3}{8.9,1.10^{-31}.\left(3.1,4.10^{-10}\right)^2.3.10^8}\)=5158886 (m)

Bài 31_ Cấu tạo chất:Cho phân tử CH2 = CH - CH = CH - CH = CH2 chuyển động trong giếng thế một chiều có chiều rộng là a. Tính năng lượng electron pi trong toàn khung phân tử? Cho biết chiều dài giữa 2 nguyên tử cacbon là 1,4 Å, hằng số planck h = 6,625.10-34 J.s và khối lượng electron me = 9,1.10-31 kg.Bài làm:    Với các phân tử chứa liên kết pi, chuyển động trong giếng thế một chiều thì chỉ...
Đọc tiếp

Bài 31_ Cấu tạo chất:Cho phân tử CH2 = CH - CH = CH - CH = CH2 chuyển động trong giếng thế một chiều có chiều rộng là a. Tính năng lượng electron pi trong toàn khung phân tử? Cho biết chiều dài giữa 2 nguyên tử cacbon là 1,4 Å, hằng số planck h = 6,625.10-34 J.s và khối lượng electron me = 9,1.10-31 kg.

Bài làm:    

Với các phân tử chứa liên kết pi, chuyển động trong giếng thế một chiều thì chỉ khảo sát cd của các electron pi và năng lượng của hệ chính là tổng năng lượng của các electron pi. 

Ta có: \(E_{\pi}=2E_1+2E_2+2E_3\)\(=2.\frac{1^2.h^2}{8.m.a^2}+2.\frac{2^2.h^2}{8.m.a^2}+2.\frac{3^2.h^2}{8.m.a^2}\)

Với các giá trị h,m đã cho ở đề bài. 

Giá trị \(a=\left(N+1\right)l_{c-c}\); N: số nguyên tử Cacbon trong mạch. Vậy : \(a=\left(6+1\right)l_{c-c}=7.1,4.10^{-10}\left(m\right)\).

Thay vào ta có: \(E_{\pi}=1,7085.10^{-18}\left(J\right)hay:1,029.10^3KJ.mol^{-1}\)

4
21 tháng 12 2014

Các bạn chú ý, khi tính ra E(\(\pi\)) = 1,7085.10-18 thì đơn vị là J2s2/kg.m2 chứ không phải là đơn vị (J), sau đó nhân với NA và nhân với 10-3 thì mới ra được kết quả là 1,06.103 kJ/mol.

21 tháng 12 2014

bạn có ghi bài trên lớp phần cấu tạo chất đủ không. co mình mượn chép lại mấy bài phần đó với