K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2020

\(A=\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{2012\times2014}\)

\(=\frac{1}{2}\times(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+...+\frac{2}{2012\times2014})\)

\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2012}-\frac{1}{2014})\)

\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{2014})\)

\(=\frac{1}{2}\times(\frac{1007}{2014}-\frac{1}{2014})\)

\(=\frac{1}{2}\times\frac{503}{1007}\)

\(=\frac{503}{2014}\)

Ta có ; \(\frac{1}{2}=\frac{1007}{2014}\)

Vậy A bé hơn B

Chúc bạn học tốt

a,Đặt  \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)

 \(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)

\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{300}\)

b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)

c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\)           (dấu . là dấu nhân)

23 tháng 9 2020

 mn ơi \(2ab=200+ab\) nha không phải \(2\cdot ab\)

23 tháng 9 2020

làm :                                                                                                                                                                                                                  

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}\)

\(=\frac{3}{8}\)

b, \(ab\cdot10-ab=2ab\)

\(ab\cdot10-ab\cdot1=2ab\)

\(ab\cdot\left(10-1\right)=2ab\)

\(ab\cdot9=2ab\)

\(ab\cdot9=200+ab\cdot1\)

\(ab\cdot9-ab\cdot1=200\)

\(ab\cdot\left(9-1\right)=200\)

\(ab\cdot8=200\)

\(ab=200:8\)

\(ab=25\)

25 tháng 7 2019

\(B=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+...+\frac{2}{18\cdot20}\)

\(B=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{18\cdot20}\)

\(B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{18}-\frac{1}{20}\)

\(B=\frac{1}{2}-\frac{1}{20}\)

\(B=\frac{9}{20}\)

=))

25 tháng 7 2019

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\)

\(A=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

Đáp án

mình lười trình bày cách làm lém, để đáp án thui nha

A = \(\frac{1999}{2000}\)

B = \(\frac{199}{200}\)

C = \(\frac{511}{512}\)

15 tháng 7 2020

Ta có \(\frac{2011}{2012}>\frac{2011}{2012+2013}\) 

          \(\frac{2012}{2013}>\frac{2012}{2012+2013}\)

\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011+2012}{2012+2013}\)(ĐPCM)

Học tốt 

DD
20 tháng 9 2021

\(A=\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)

Tổng trên có số số hạng là: \(\left(90-32\right)\div1+1=59\)

\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)

\(>\frac{1}{45}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)

\(=\left(\frac{1}{90}+\frac{1}{90}\right)+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)

\(=\frac{60}{90}=\frac{2}{3}\)

20 tháng 9 2021

Đoàn Đức Hà:  Tại sao dòng số 4 phân số đầu tiên lại là \(\frac{1}{45}\)ạ?

3 tháng 7 2018

bài 1

a,

32 + 68 :17 x 5 - 29

= 32 + 20 -29

= 52 - 29

= 23

b,

15 x 48 - 30 x 24 - 125

= 720 - 720 -125

= 0-125

3 tháng 7 2018

a,

32 + 68 :17 x 5 - 29

= 32 + 20 -29

= 52 - 29

= 23

b,

15 x 48 - 30 x 24 - 125

= 720 - 720 -125

= 0-125