K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có

\(1-\frac{2018}{2019}=\frac{1}{2019}\)\(1-\frac{2019}{2020}=\frac{1}{2020}\)

\(\frac{1}{2019}>\frac{1}{2020}\)vậy\(\frac{2018}{2019}>\frac{2019}{2020}\)

15 tháng 7 2019

a) Ta có \(\frac{13}{7}=2-\frac{1}{7}\)

              \(\frac{21}{12}=2-\frac{1}{4}\)

Vì \(\frac{1}{7}< \frac{1}{4}\)\(\Rightarrow2-\frac{1}{7}>2-\frac{1}{4}\)\(\Rightarrow\frac{13}{7}>\frac{21}{12}\)

Vậy \(\frac{13}{7}>\frac{21}{12}\)

b) Ta có : \(\frac{2018}{2019}=1-\frac{1}{2019}\)

               \(\frac{2019}{2020}=1-\frac{1}{2020}\)

Vì \(\frac{1}{2019}>\frac{1}{2020}\Rightarrow1-\frac{1}{2019}< 1-\frac{1}{2020}\Rightarrow\frac{2018}{2019}< \frac{2019}{2020}\)

Vậy \(\frac{2018}{2019}< \frac{2019}{2020}\)

c) Ta có :Vì  \(\frac{17}{53}< \frac{17}{50}< \frac{19}{50}\) \(\Rightarrow\frac{17}{53}< \frac{19}{50}\)

Vậy \(\frac{17}{53}< \frac{19}{50}\)

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

24 tháng 8 2018

a) Ta có : \(\frac{12}{48}< \frac{12}{47}\)\(\frac{12}{48}< \frac{13}{48}\)

=> \(\frac{12}{48}< \frac{13}{47}\)

b) Ta có : \(\frac{7}{13}=1-\frac{6}{13}\)

               \(\frac{17}{23}=1-\frac{6}{23}\)

Mà \(-\frac{6}{13}< -\frac{6}{23}\)=> \(\frac{7}{13}< \frac{17}{23}\)

27 tháng 5 2019

Bài làm

c ) Ta có :

 \(\frac{2017}{2018}< 1\)

\(\frac{12}{11}>1\)

\(\Rightarrow\frac{2017}{2018}< \frac{12}{11}\)

trả lời

a, quy đồng rồi so sánh 

b,quy đồng rồi so sánh 

c,phân số nào có tử nhỏ hơn mẫu khi so sành với phân số có tử lớn hơn mẫu đều bé hơn

d,quy đồng rồi so sánh

chắc vậy chúc bn học tốt

20 tháng 5 2019

-15 vs lại -9 à

20 tháng 5 2019

Nếu là âm thì:

\(\frac{13}{17}>\frac{-15}{19}\);\(\frac{12}{48}>\frac{-9}{36}\)

DD
20 tháng 9 2021

\(A=\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)

Tổng trên có số số hạng là: \(\left(90-32\right)\div1+1=59\)

\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)

\(>\frac{1}{45}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)

\(=\left(\frac{1}{90}+\frac{1}{90}\right)+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)

\(=\frac{60}{90}=\frac{2}{3}\)

20 tháng 9 2021

Đoàn Đức Hà:  Tại sao dòng số 4 phân số đầu tiên lại là \(\frac{1}{45}\)ạ?

28 tháng 5 2018

a) Ta có :

\(\frac{7}{12}< \frac{x}{24}< \frac{2}{3}\)

\(\Rightarrow\frac{14}{24}< \frac{x}{24}< \frac{16}{24}\)

\(\Rightarrow14< x< 16\)

\(\Rightarrow x=15\)

Vậy x = 15

b) \(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+...+\left(x+28\right)=195\)

\(\Rightarrow\left(x+x+x+...+x\right)+\left(1+4+7+...+28\right)=195\)

\(\Rightarrow10x+145=195\)

\(\Rightarrow10x=195-145\)

\(\Rightarrow10x=50\)

\(\Rightarrow x=50:10\)

\(\Rightarrow x=5\)

Vậy x = 5

c) \(\left(x+0,5\right)+\left(x+1,5\right)+\left(x+2,5\right)=33\)

\(\Rightarrow\left(x+x+x\right)+\left(0,5+1,5+2,5\right)=33\)

\(\Rightarrow3x+4,5=33\)

\(\Rightarrow3x=33-4,5\)

\(\Rightarrow3x=28,5\)

\(\Rightarrow x=28,5:3\)

\(\Rightarrow x=9,5\)

Vậy x = 9,5

_Chúc bạn học tốt_

28 tháng 5 2018

a, \(\frac{7}{12}\)\(< \)\(\frac{x}{24}\)\(< \)\(\frac{2}{3}\)

\(\frac{14}{24}\)\(< \)\(\frac{x}{24}\)\(< \)\(\frac{16}{24}\)

Số lớn hơn 14 và nỏ hơn 16 là : 15

\(\Rightarrow\)Vậy \(x\)= 15

3 tháng 7 2018

bài 1

a,

32 + 68 :17 x 5 - 29

= 32 + 20 -29

= 52 - 29

= 23

b,

15 x 48 - 30 x 24 - 125

= 720 - 720 -125

= 0-125

3 tháng 7 2018

a,

32 + 68 :17 x 5 - 29

= 32 + 20 -29

= 52 - 29

= 23

b,

15 x 48 - 30 x 24 - 125

= 720 - 720 -125

= 0-125

4 tháng 2 2020

a) 3 phân số đó là: 51/80    ,    52/80 và 53/80

4 tháng 2 2020

bai 2 ket qua la 23

18 tháng 8 2018

3/4, 11/12, 19/18, 7/6 

(học tốt)

18 tháng 8 2018

3/4 ; 11/12; 19/18; 7/6 nha