Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích B ta có
B = \(\frac{2014+2015}{2015+2016}=\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)
vì \(\frac{2014}{2015+2016}<\frac{2014}{2015}\) ., \(\frac{2015}{2015+2016}<\frac{2015}{2016}\)
=> B< A
A=2014/2015+2015/2016. B=(2014+2015)/(2015+2016)
A=1-1/2015+1-1/2016. B=1-2/4031
A=1+1-(2015+2016)/(2015x2016). So sánh
A=1+1-(4031)/(2015x2x1008). 1+1-[4031/(4030x1008)]>1;1-2/4031<1.
A=1+1-[4031/(4030x1008)]. Vậy 1+1-[4031/(4030x1008)]>1-2/4031.
=>A>B
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015}\) (1)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\) (2)
ộng caác bất đẳng thứa (1) và (2) vào vế với vế:
\(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\Rightarrow A>B\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}+\frac{1}{1}=2\)
\(\Rightarrow\)\(A< 2\left(đpcm\right)\)
chúc bạn học tốt!!!
Bài 6 :
2S = 6 + 3 + 3/2 + ... + 3/2^8
2S = 6 - 3/2^9 + S
S = 6 - 3/2^9
Vậy S = 6 - 3/2^9
Bài 7 :
Ta có :
A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2
=) A < 2
Vậy A < 2
Bài 8 :
Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )
=) A < B
Vậy A < B
Bài 9:
Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)
=) A > B
Vậy A > B
Nhờ Mọi Người cho mk ít dạng bài tập kiểu đó và bài giải giùm vs ạ !! Thanks nhiều ^^
b, \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)
=\(\frac{2^2.78}{104}\)=\(\frac{312}{104}\)=3
a) số số hạng
(2015-1) : 2+1=1008
tổng dãy số
1008 x (2015 +1) :2 = 1016064
a) 1+3+5+7+...+2015
Day tren co so so hang la:
(2015-1):2+1=1008(so hang)
Tong tren bang: (2015+1).1008:2=1016064
b) \(\left(2015.2014+2014.2013\right).\left(1+\frac{1}{2}:1\frac{1}{2}-1\frac{1}{3}\right)\)
= \(\left(2015.2014+2014.2013\right).\left(1+\frac{1}{2}:\frac{3}{2}-\frac{4}{3}\right)\)
= \(\left(2015.2014+2014.2013\right).\left(1+\frac{1}{2}.\frac{2}{3}-\frac{4}{3}\right)\)
= \(\left(2015.2014+2014.2013\right).\left(1+\frac{1}{3}-\frac{4}{3}\right)\)
= \(\left(2015.2014+2014.2013\right).\left(\frac{4}{3}-\frac{4}{3}\right)\)
=\(\left(2015.2014+2014.2013\right).0\)
= \(0\)
a)Ta có : \(A=\frac{10^{2014}+5}{10^{2014}-2}\)
=> \(A-1=\frac{10^{2014}+5-\left(10^{2014}-2\right)}{10^{2014}-2}=\frac{7}{10^{2014}-2}\)
Lại có : \(B=\frac{10^{2014}}{10^{2014}-7}\)
=> B - 1 = \(\frac{10^{2014}-\left(10^{2014}-7\right)}{10^{2014}-7}=\frac{7}{10^{2014}-7}\)
Vì : \(\frac{7}{10^{2014}-2}< \frac{7}{10^{2014}-7}\)
nên A - 1 < B - 1
=> A < B
b) Ta có : 4x + 1295 = 6y
=> 6y - 4x = 1295
Với x ; y \(\inℕ\)
=> 4x ; 6y \(\inℕ\)
mà 6y - 4x = 1295 (1)
=> 6y > 4x ; 6y > 1295
Vì 6y > 1295
=> \(y\ge4\)
Ta xét các trường hợp
Nếu \(x;y>0\)
=> 6y ; 4x chẵn
=> 6y - 4x chẵn (loại vì 1295 lẻ)
Nếu x = 0 ; y > 0
Khi đó (1) <=> 6y - 1 = 1295
=> 6y = 1296
=> 6y = 64
=> y = 4 (tm)
Vậy x = 0 ; y = 4