Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1+2+...+2^{2011}\)
\(=2^0+2+...+2^{2010}+2^{2011}\)
\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)
\(=2^0\cdot3+...+2^{2010}\cdot3\)
\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)
Các câu còn lại tương tự, dài quá
a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.
Ta có :
A = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 + 22011 )
=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )
=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3
- Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )
b,
Ta có :
B = 1 + 7 +...+ 7101
=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )
=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )
=> B = 50 + 72.50 +...+799.50
=> B = 50.( 1 + 72 +...+ 799 ) => B chia hết cho 50
Dưới tương tự...
\(a,\left(7^{2003}+7^{2002}\right):7^{2001}\)
\(=7^{2003}:7^{2001}+7^{2002}:7^{2001}\)
\(=7^2+7\)
\(=49+7\)
\(=56\)
a, \(\left(7^{2003}+7^{2002}\right)\div7^{2001}=7^{2001}.\left(7^2+7\right)\div7^{2001}=7^2+7=56\)
b, \(\left(5^4+4^7\right)\left(8^9-2^7\right)\left(2^4-4^2\right)\)
\(=\left(5^4+4^7\right)\left(8^9-2^7\right)\left(16-16\right)\)
\(=\left(5^4+4^7\right)\left(8^9-2^7\right)0=0\)
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
nhóm 3 số vào 1 nhóm rồi ts chúng riêng nhom thứ nhất tính ra luôn
S=1+3^2+3^4+3^6+...+3^2002
3^2S=3^2+3^4+3^8+..+3^2004
9S-S=3^2+3^4+3^6+3^8+...+3^2004-1-3^2-3^4-3^6-...-3^2002
8S=3^2004-1
S=(3^2004-1):8
b) (1+3^2+3^4)+...+(3^1998+3^2000+3^2002)
=91+...+3^1998(1+3^2+3^4)
=91(1+...+3^1998) chia hết cho 7
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
4S = 4 + 42 + 43 + 44 + ... + 4120
4S - S = 4120 - 1
3S = 4120 - 1
3S + 1 = 4120 - 1 + 1
Vì 43 = 64 < 34 = 81\(\hept{\begin{cases}3S+1=4^{120}=\left(4^3\right)^{40}\\B=3^{160}=\left(3^4\right)^{40}\end{cases}}\)
\(\Rightarrow\left(4^3\right)^{40}< \left(3^4\right)^{40}\)
\(\Rightarrow3S+1< B\)
Vậy \(3S+1< B\)
Chúc bạn học tốt !!!
Ta có :S=1-2+2^2-2^3+....+2^2002
==> 2S=2(1-2+2^2-2^3=...=2^2002
==>2S=2-2^2+2^3-2^2+...+2^2003
==>2S+S=(1-2=2^2-2^3+...+2^2002)+(2-2^2=2^3-2^4+...+2^2003)
==>3S=1+2^2003
Mà M=3S-2^2003
==>M=1+2^2003-2^2003
==>M=1
Vậy M=1