Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x_2}{x_1}=\dfrac{x_3}{x_2}=\dfrac{x_2+x_3}{x_1+x_2}=\dfrac{x_2+x_3}{3}\) (1)
\(\dfrac{x_3}{x_2}=\dfrac{x_4}{x_3}=\dfrac{x_3+x_4}{x_2+x_3}=\dfrac{12}{x_2+x_3}\)
\(\Rightarrow\dfrac{x_2+x_3}{3}=\dfrac{12}{x_2+x_3}\Rightarrow x_2+x_3=\pm6\)
Th1: \(x_2+x_3=6\) thế vào (1):
\(\dfrac{x_2}{x_1}=\dfrac{x_3}{x_2}=\dfrac{x_4}{x_3}=\dfrac{6}{3}=2\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2x_1\\x_4=2x_3\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}x_1+x_2=3\\x_3+x_4=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_1=3\\3x_3=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=1;x_2=2\\x_3=4;x_4=8\end{matrix}\right.\)
\(\Rightarrow m=x_1x_2=2\)
Khỏi cần làm TH2 \(x_2+x_3=-6\) nữa, chọn luôn C
a) Xét: x2 - 4mx + 9.(m – 1)2 = 0 (1)
Δ’ = (2.m)2 – 9.(m – 1)2 = 4m2 – 9.(m2 – 2m + 1) = -5m2 + 18m – 9
Phương trình (1) có nghiệm ⇔ Δ’ ≥ 0
⇔ -5m2 + 18m – 9 ≥ 0
⇔ 5m2 - 18m + 9 ≤ 0
⇔ (5m – 3)(m – 3) ≤ 0
⇔ 3/5 ≤ m ≤ 3.
b) + x1 ; x2 là hai nghiệm của (1) nên theo định lý Vi-et ta có:
+ Tìm hệ thức giữa x1 và x2 không phụ thuộc vào m.
Thử lại:
+ m = 1, (1) trở thành x2 – 4x = 0 có hai nghiệm x = 0; x = 4 có hiệu bằng 4
+ m = 13/5, (1) trở thành có hai nghiệm x = 7,2 và x = 3,2 có hiệu bằng 4.
Vậy m = 1 hoặc m = 13/5.
Đáp án: A
Ta tìm phương trình có 2 nghiệm là và 1. Ta có thể thử nghiệm vào từng phương trình xem phương trình nào thỏa mãn hoặc giải từng phương trình rồi so sánh nghiệm.
⇒ Chọn đáp án A.
Hình như đề thiếu, pt: \(x^2-\left(m+1\right)x+m-2=0\)
Phương trình đã cho có nghiệm khi \(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2-2m+9>0\)
\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị m
Định lí Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m-2\end{matrix}\right.\)
a, Theo giả thiết ta có: \(x_1^2+x_2^2=100\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=100\)
\(\Leftrightarrow\left(m+1\right)^2-2\left(m-2\right)=100\)
\(\Leftrightarrow m^2+2m+1-2m+4=100\)
\(\Leftrightarrow m^2=95\)
\(\Leftrightarrow m=\sqrt{95}\)
b, \(P=\left|x_1-x_2\right|\)
\(P^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(m+1\right)^2-4\left(m-2\right)\)
\(=m^2-2m+9=\left(m-1\right)^2+8\ge8\)
\(\Rightarrow P=\left|x_1-x_2\right|\ge2\sqrt{2}\)
\(minP=2\sqrt{2}\Leftrightarrow m=1\)
a: Để phương trình có hai nghiệm trái dấu thì m+2<0
hay m<-2
Theo định lí Viet thì \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1.x_2=\left(3m-3\right)^2\end{matrix}\right.\)
\(\dfrac{16}{9}.x_1.x_2=\dfrac{16}{9}.\left(3m-3\right)^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left[\dfrac{4}{3}.\left(3m-3\right)\right]^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left(4m-4\right)^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left(x_1+x_2-4\right)^2\)
Đối chiếu ⇒ \(\left\{{}\begin{matrix}a=-4\\b=\dfrac{16}{9}\end{matrix}\right.\)
⇒ \(\dfrac{b}{a}=\dfrac{-4}{9}\)
Trước hết phải xét điều kiện để phương trình x 2 - 2 m - 1 x + m 2 - 3 m + 4 = 0 có nghiệm: ∆ ' = m - 1 2 - m 2 - 3 m + 4 = m - 3 > 0 hay m > 3.
Từ đó thấy ngay các phương án A, B, C đều sai.
Khi m = 4 thì phương trình đã cho có 2 nghiệm .
Áp dụng hệ thức Vi- et ta có:
x 1 + x 2 = 2 m - 1 = 2 . 4 - 1 = 6 x 1 . x 2 = m 2 - 3 m + 4 = 4 2 - 3 . 4 + 4 = 8
Khi đó; x 1 2 + x 2 2 = x 1 + x 2 2 - 2 x 1 . x 2 = 6 2 - 2 . 8 = 20