Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) sai đề rồi bn
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)(tính chất dãy tỉ số bằng nhau) (1)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3-b^3}{c^3-d^3}\)(2)
từ (1) và (2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)
3. Tìm x biết: |15-|4.x||=2019
\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)
vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)
KL: x=508,5
Ta có:\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}.2=\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{2}{c}=\frac{b}{a.b}+\frac{a}{a.b}\)
\(\Rightarrow\frac{2}{c}=\frac{a+b}{a.b}\)
\(\Rightarrow2.a.b=c\left(a+b\right)\)
\(\Rightarrow a.b+a.b=ca+cb\)
\(\Rightarrow ab-cb=ac-ab\)
\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
hok tốt!!
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Leftrightarrow a=bk;c=dk\)
\(\frac{a}{a-b}=\frac{bk}{bk-b}\)
\(=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
=>\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
=> \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)( đpcm )
Ta có: a+b+c=0a+b+c=0
\Rightarrow b+a=-c⇒b+a=−c
\Rightarrow c+b=-a⇒c+b=−a
\Rightarrow a+c=-b⇒a+c=−b
Ta có: A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)A=(1+
b
a
)(1+
c
b
)(1+
a
c
)
\Rightarrow A=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)⇒A=(
b
b+a
)(
c
c+b
)(
a
a+c
)
\Rightarrow A=\left(\frac{-c}{b}\right)\left(\frac{-a}{c}\right)\left(\frac{-b}{a}\right)⇒A=(
b
−c
)(
c
−a
)(
a
−b
)
\Rightarrow A=-1⇒A=−1
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b-c+2c}{a+b-c}=\frac{a-b-c+2c}{a-b-c}=1+\frac{2c}{a+b-c}=1+\frac{2c}{a-b-c}\)
\(\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Leftrightarrow\orbr{\begin{cases}c=0\\a+b-c=a-b-c\end{cases}\Leftrightarrow\orbr{\begin{cases}c=0\\b-c=-b-c\end{cases}\Leftrightarrow}\orbr{\begin{cases}c=0\\b=0\left(loai\right)\end{cases}}}\)
câu 1 thì b áp dụng t.c là ra
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow2c=\frac{a+b}{ab}\)
\(\Rightarrow2ab=\left(a+b\right)c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-bc\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
với a,b,c khác 0 và b khác c
đpcm.