Bài 4:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

 Ta chứng minh được BEDF là hình bình hành P BE = DF và EBF  = CDF 

Cách khác: DAEB = DCFD (c.g.c) suy ra BE = DF và ABE  = CDF  .

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

6 tháng 9 2021

Câu 1:

undefined

* Hình thang ABCD có AB // CD

E là trung điểm của AD (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của hình thang ABCD

EF // CD (tỉnh chất đưòng trung bình hình thang) (1)

* Trong ΔADC ta có: 

E là trung điểm của AD (gt)

I là trung điểm của AC (gt) 

Nên EI là đường trung bình của ΔADC

⇒ EI // CD (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) và theo tiên đề ƠClít ta có đường thẳng EF và EI trùng nhau. Vậy E, F, I thẳng hàng

Câu 2:

undefined

Gọi E là trung điểm của DC

Trong ΔBDC, ta có:

M là trung điểm của BC (gt)

E là trung điểm của CD (gt)

Nên ME là đường trung bình của ∆BCD

⇒ME // BD (tính chất đường trung bình tam giác)

Suy ra: DI // ME

AD = 1/2 DC (gt)

DE = 1/2 DC (cách vẽ)

⇒ AD = DE và DI//ME

Nên AI= IM (tính chất đường trung bình của tam giác).

E, F là trung điểm của AD và BC (đề bài) => EF là đường trung bình của ht ABCD => EF//AB//CD

+ Xét tg ABD có

E là trung điểm AD (đề bài)

EI//AB

=> EI là đường trung bình của tg ABD => EI=AB/2 (1)

+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)

Từ (1) và (2) => EI=KF 

+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2

⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.

b/ Câu b dựa vào KQ của câu a

10 tháng 10 2021

+ ΔABD có DE = EA và DK = KB

⇒ EK là đường trung bình của ΔDAB

⇒ EK // AB

 
 

+ Hình thang ABCD có: AE = ED và BF = FC

⇒ EF là đường trung bình của hình thang ABCD

⇒ EF // AB// CD

+ Qua điểm E ta có EK // AB và EF // AB nên theo tiên đề Ơclit ta có E, K, F thẳng hàng.

11 tháng 2 2016

xl nha. mk chua hk  toi. ra tet mk moi hk den bai nay

11 tháng 2 2016

m ở đâu vậy bạn