Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x-mx+2m-1=0
\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)
*Nếu \(m=2\)thay vào (1) ta được:
\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)
Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.
*Nếu \(m\ne2\)thì phương trình (1) có nghiệm \(x=\frac{1-2m}{2-m}\)
Vậy \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)
b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé
b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)
*Nếu \(m\ne2\).....pt có ngiệm x=m+2
*Nếu \(m=2\)....pt có vô số nghiệm
Vậy ....
c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)
Nếu \(m=2\).... pt có vô số nghiệm
Nếu \(m=-2\)..... pt vô nghiệm
Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)
Để nghiệm \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)
Vậy m<-2
(m-2) x -(m-1) =0
Để PT đã cho là phương trình bậc nhất một ẩn thì
=> m - 2 \(\ne\)0
=> m \(\ne\)2
Vậy m \(\ne\)2 thì (m-2) x - m +1 là phương trình bậc nhất một ẩn.
Câu này thực chất bạn chỉ cần đưa về dạng ax+b =0 rồi lập luận là được. Chúc bạn học tốt.
Để phương trình bậc nhất 1 ẩn thì \(m-2\ne0\)
\(\Rightarrow m\ne2\)
Vậy m\(\ne\)2 thì phương trình là phương trình bậc nhất 1 ẩn
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow-2x+2mx-2=0\)
\(\Leftrightarrow2\left(mx-x-1\right)=0\)
\(\Leftrightarrow mx-x-1=0\)
\(\Leftrightarrow x\left(m-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{m-1}\)
\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)
Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
a) với m = 1 thay vào phương trình thì phương trình trở thành
\(\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2=5\Leftrightarrow x^2-1-x^2+4x-4-5=0\Leftrightarrow4x-10=0\Leftrightarrow x=\frac{5}{2}\)b) phương trình nhận x = - 3 là nghiệm thì ta thay x = -3 vào phương trình sẽ thỏa mãn
thay x = -3 vào phưowng trình trở thành:
\(\left(-3m+1\right)\times\left(-4\right)-m\left(-3-2\right)^2=5\)
\(\Leftrightarrow12m-4-m\left(-5\right)^2=5\Leftrightarrow-13m=9\Leftrightarrow m=\frac{-9}{13}\)
Vậy với m = -9/13 thì phương trình có nghiệm x=-3
\((3x-2)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow3x-2=0\) hoặc \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\)
- \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\) ;
- \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\Leftrightarrow\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\Leftrightarrow10\left(x+3\right)=7\left(4x-3\right)\Leftrightarrow x=\frac{17}{6}\).
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{7}{16}\right\}\).
\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\10\left(x+3\right)=7\left(4x-3\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
vậy x=2/3 hoặc x=17/6