K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

Tham khảo:

Giải phương trình: \(\sqrt{12-\dfrac{3}{x^2}}+\sqrt{4x^2-\dfrac{3}{x^2}}=4x^2\) - Hoc24

18 tháng 9 2018

a) điều kiện xác định : \(x\ge1\)

ta có : \(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-3=\dfrac{2}{3}\sqrt{x-1}\)

\(\Leftrightarrow\dfrac{1}{6}\sqrt{x-1}=-3\left(vôlí\right)\) vậy phương trình vô nghiệm

b) điều kiện xác định \(x\ge3\)

ta có : \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}=x-3\) \(\Leftrightarrow\left|x-2\right|+\left|x+3\right|=x-3\)

\(\Leftrightarrow x-2+x+3=x-3\Leftrightarrow x=-4\left(L\right)\) vậy phương trình vô nghiệm

c) điều kiện xác định : \(\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\x< 1\end{matrix}\right.\)

ta có : \(\sqrt{\dfrac{2x-3}{x-1}}=2\) \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\) vậy \(x=\dfrac{1}{2}\)

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

23 tháng 11 2015

\(\Leftrightarrow4\left(x+1\right)+\sqrt{2\left(x+1\right)^2+\left(x^2+1\right)}-3\sqrt{x^2+1}=0\)

\(a=x+1;\text{ }b=\sqrt{x^2+1}\)

\(\Rightarrow4a-3b+\sqrt{2a^2+b^2}=0\Leftrightarrow3b-4a=\sqrt{2a^2+b^2}\)

\(\Rightarrow\left(3b-4a\right)^2=2a^2+b^2\Leftrightarrow7\left(\frac{a}{b}\right)^2-12\frac{a}{b}+4=0\)

\(\Leftrightarrow\frac{a}{b}=\frac{6\pm2\sqrt{2}}{7}\)

Khá xấu nhưng vẫn giải được nhé. Bạn kiểm tra lại ở trên rồi tính toán nốt.

11 tháng 7 2017

b)\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)

Đk:\(-\sqrt{10}\le x\le\sqrt{10}\)

\(pt\Leftrightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x-4\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x+3\right)\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-\left(x-4\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x+3=0\\10-x^2=x^2-8x+16\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\-2x^2+8x-6=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-3\\-\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=-3\) (thỏa)

c)\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+3}=\sqrt{x^2-x+1}+\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+3}}+\sqrt{x+3}-\sqrt{x^2-x+1}-\sqrt{x+1}=0\)

Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x+1}=b;\sqrt{x+3}=c\left(a,b,c>0\right)\)

\(\Leftrightarrow\dfrac{ab}{c}+c-a-b=0\)

\(\Leftrightarrow\dfrac{\left(a-c\right)\left(b-c\right)}{c}=0\)

\(\Leftrightarrow\left(a-c\right)\left(b-c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-c=0\\b-c=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}a=c\\b=c\end{matrix}\right.\)

*)Xét \(a=c\)\(\Rightarrow\sqrt{x^2-x+1}=\sqrt{x+3}\)

\(\Rightarrow x^2-x+1=x+3\Rightarrow x=\dfrac{2\pm\sqrt{12}}{2}\) (thỏa)

*)Xét \(b=c\)\(\Rightarrow\sqrt{x+1}=\sqrt{x+3}\)

\(\Rightarrow x+1=x+3\Rightarrow-2=0\) (loại)

11 tháng 7 2017

a)Xem câu hỏi

Xem thêm về liên hợp ở đây

9 tháng 8 2017

2. ĐK: \(x\ge0\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\ge0\\b=\sqrt{x^2+4}\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2a^2\\x^2+4=b^2\\3\sqrt{x^3+4x}=3ab\end{matrix}\right.\)

pt trên được viết lại thành

\(2a^2+b^2-3ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=\dfrac{1}{2}b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x}=\dfrac{1}{2}\sqrt{x^2+4}\end{matrix}\right.\)

Đến đây dễ rồi nhé ^^

9 tháng 11 2015

Đk : ... 

dễ thấy x  = 0 không là nghiệm của pt 

chia cả hai vế của pt cho \(\sqrt{x}\)  ta có :

\(\frac{x+1+\sqrt{x^2-4x+1}}{\sqrt{x}}=3\)

<=> \(\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{x-4+\frac{1}{x}}=3\) 

Đặt \(\sqrt{x}+\frac{1}{\sqrt{x}}=t\) => \(x+\frac{1}{x}=t^2-2\) 

pt <=> \(t+\sqrt{t^2-6}=3\)

giải tiếp nha 

12 tháng 11 2015

ừm , mấy bạn này cũng lớp 9 hết á

26 tháng 7 2018

\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)

\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x}\)