Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
a) 8x - 3 = 5x + 12
<=> 8x - 5x = 12 + 3
<=> 3x = 15
<=> x = 5
b) \(\frac{x}{x^2-4}=\frac{1}{x+2}-\frac{1-x}{2-x}\) ; x khác +-2
<=> \(\frac{x}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}-\frac{1-x}{2-x}\)
=> x(2 - x) = (x - 2)(2 - x) - (1 - x)(x + 2)(x - 2)
<=> -x^2 + 2x = x^3 - 2x^2
<=> -x^2 + 2x - x^3 + 2x^2 = 0
<=> x^3 - x^2 - 2x = 0
<=> x(x + 1)(x - 2) = 0
<=> x = 0 hoặc x + 1 = 0 hoặc x - 2 = 0
<=> x = 0 (tm) hoặc x = -1 (tm) hoặc x = 2 (ktm)
Vậy: phương trình có tập nghiệm: S = {0; -1}
c) |x - 5| = 3x + 1
Ta có: \(\left|x-5\right|=\hept{\begin{cases}x-5\text{ nếu }x-5\ge0\Leftrightarrow x\ge5\\-\left(x-5\right)\text{ nếu }x-5< 0\Leftrightarrow x< 5\end{cases}}\)
+) Nếu x > 5, ta có phương trình:
x - 5 = 3x + 1
<=> x - 3x = 1 + 5
<=> -2x = 6
<=> x = -3 (ktm)
+) Nếu x < 5, ta có phương trình:
-(x - 5) = 3x + 1
<=> -x + 5 = 3x + 1
<=> -x - 3x = 1 - 5
<=> -4x = -4
<=> x = 1 (tm)
Vậy: phương trình có tập nghiệm: S = {1}
17) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1-3x^2-2x^2+2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow-4x^2+3x+1=0\)
\(\Leftrightarrow-\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-\frac{1}{4}\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{4}\right\}\)
18) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
19) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\\x\ne\frac{1}{2}\end{cases}}\)
\(\frac{x+4}{2x^3-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\frac{x+4}{\left(2x-1\right)\left(x-2\right)}+\frac{x+1}{\left(2x-1\right)\left(x-3\right)}-\frac{2x+5}{\left(2x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-12+x^2-x-2-2x^2-x+10}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow x=-4\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)
20) \(ĐKXĐ:x\ne0\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow x^4+x-x^4+x-3=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)
( x + 2 ) ( x2 - 3x + 5 ) = ( x + 2 )
<=> x2 - 3x + 5 = 1
<=> x2 - 3x + 4 = 0
<=> x2 - 3x + 9/4 + 7/4 = 0
<=> ( x - 3/2 )2 = - 7/4 ( mâu thuẫn )
=> Pt vô nghiệm
\(\frac{x}{x-3}>1\)<=> \(\frac{x}{x-3}-1>0\)
<=>\(\frac{x-\left(x-3\right)}{x-3}>0\)<=>\(\frac{3}{x-3}>0\)
<=> x - 3 > 0 <=> x > 3
a)
\(x=-2,\frac{3+i\sqrt{7}}{2},\frac{3-i\sqrt{7}}{2}\)
b) \(x>3\)
Ký hiệu khoảng:
\(\left(3,\infty\right)\)
\(a.\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\)\(0\)
\(\Leftrightarrow\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2.\left(x+1\right).\left(x-3\right)}=0\)
\(\Leftrightarrow2x^2-6=0\)
\(\Leftrightarrow2x^2=6\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\sqrt{3}\)
\(b.2x^3-5x^2+3x=0\)
\(\Leftrightarrow x.\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x.\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x.\left[2x.\left(x-1\right)-3.\left(x-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x-1\right).\left(2x-3\right)=0\)
Đến đây tự làm nhé có việc bận
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(\left(10x+3\right):8=\left(7-8x\right):12\)
\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)
\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)
\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)
\(\frac{23}{12}x=\frac{5}{24}\)
\(x=\frac{5}{46}\)
E mới lớp 6 nên giải sai thì thông cảm ạ UwU
\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)
\(< =>\frac{x}{45}=\frac{32}{45}\)
\(< =>x=32\)
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)
\(< =>120x+36=56-64x\)
\(< =>184x=56-36=20\)
\(< =>x=\frac{20}{184}=\frac{5}{46}\)
Giải :
\(\frac{5x-2}{3}+x=1+\frac{5-3x}{2}\)
\(\Leftrightarrow\frac{2\left(5x-2\right)+6x}{6}=\frac{6+3\left(5-3x\right)}{6}\)
\(\Leftrightarrow10x-4+6x=6+15-9x\)
\(\Leftrightarrow10x+6x+9x=6+15+4\)
\(\Leftrightarrow25x=25\Leftrightarrow x=1\).
Vậy tập nghiệm của phương trình đã cho là : S = {1}.
Một cách khác dài dòng hơn :)
\(\frac{5x-2}{3}+x=1+\frac{5-3x}{2}\)
\(\Leftrightarrow\frac{5}{3}x+\frac{-2}{3}+x=1+\frac{5}{2}+\frac{-3}{2}x\)
\(\Leftrightarrow\left(\frac{5}{3}x+x\right)+\left(\frac{-2}{3}\right)=\left(\frac{-3}{2}x\right)+\left(1+\frac{5}{2}\right)\)
\(\Leftrightarrow\frac{8}{3}x+\frac{-2}{3}=\frac{-3}{2}x+\frac{7}{2}\)
\(\Leftrightarrow\frac{8}{3}x+\frac{-2}{3}+\frac{3}{2}x=\frac{7}{2}\)
\(\Leftrightarrow\frac{25}{6}x+\frac{-2}{3}=\frac{7}{2}\)
\(\Leftrightarrow\frac{25}{6}x=\frac{7}{2}+\frac{2}{3}\)
\(\Leftrightarrow\frac{25}{6}x=\frac{25}{6}\)
\(\Leftrightarrow x=\frac{25}{6}:\frac{25}{6}=1\)
=> x = 1