Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,-3/5.2/7+-3/7.3/5+-3/7
=-3/7.2/5+(-3/7).3/5+(-3/7)
=-3/7(2/5+3/5+1)
=-3/7.2
=-6/7
Ta có : \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1000.1001}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{1001-1000}{1000.1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)
\(=1-\frac{1}{1001}=\frac{1000}{1001}\)
Ta thấy : \(1001< 2020\Rightarrow\frac{1}{1001}>\frac{1}{2020}\)
\(\Rightarrow-\frac{1}{1001}< -\frac{1}{2020}\)
\(\Rightarrow1-\frac{1}{1001}< 1-\frac{1}{2020}\Rightarrow\frac{1000}{1001}< \frac{2019}{2020}\)
Hay : \(N< M\)
Bài 1:
a) b) c) sẽ có bạn giải cho em thôi vì nó dễ tính tay cũng đc
d) \(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{23.26}\)
\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\frac{6}{13}\)
\(=\frac{8}{13}\)
Bài 2:
a) b) c)
d)\(|\frac{5}{8}x+\frac{6}{7}|-\frac{4}{7}=\frac{10}{7}\)
\(\Leftrightarrow|\frac{5}{8}x+\frac{6}{7}|=2\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{6}{7}=2\\\frac{5}{8}x+\frac{6}{7}=-2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{8}{7}\\\frac{5}{8}x=\frac{-20}{7}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{64}{35}\\x=\frac{-32}{7}\end{cases}}}\)
Vậy \(x\in\left\{\frac{64}{35};\frac{-32}{7}\right\}\)
Bài 1 :
a) \(\left(\frac{2}{5}-\frac{5}{8}\right):\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-9}{40}:\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-27}{44}+\frac{1}{8}\)
\(=\frac{-43}{88}\)
\(a,\frac{2}{3}\cdot x-\frac{4}{7}=\frac{1}{8}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{1}{8}+\frac{4}{7}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{7}{56}+\frac{32}{56}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{39}{56}\)
\(\Leftrightarrow x=\frac{39}{56}:\frac{2}{3}=\frac{39}{56}\cdot\frac{3}{2}=\frac{39\cdot3}{56\cdot2}=\frac{117}{112}\)
\(b,\frac{2}{7}-\frac{8}{9}\cdot x=\frac{2}{3}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{2}{7}-\frac{2}{3}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{6}{21}-\frac{14}{21}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{-8}{21}\)
\(\Leftrightarrow x=\frac{-8}{21}:\frac{8}{9}=\frac{-8}{21}\cdot\frac{9}{8}=\frac{-8\cdot9}{21\cdot8}=\frac{-1\cdot3}{7\cdot1}=\frac{-3}{7}\)
Làm nốt hai bài cuối đi nhé
Study well >_<
Mk k chép lại đề bài nha
a)\(\frac{2}{3}.x=\frac{1}{8}+\frac{4}{7}\)
\(\frac{2}{3}.x=\frac{7}{56}+\frac{32}{56}\)
\(\frac{2}{3}.x=\frac{39}{56}\)
\(x=\frac{39}{56}:\frac{2}{3}\)
\(x=\frac{39}{56}.\frac{3}{2}\)
\(x=\frac{117}{112}\)
Mk sợ sai lém!!!
a) \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)
vậy \(\frac{1}{n}và\frac{1}{n+1}\)có hiệu và tích bằng nhau
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}\)
do có các cặp âm và dương nên gạch vậy A=\(\frac{1}{2}-\frac{1}{9}\)=\(\frac{7}{18}\)
B=\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{10.11}\)
cách lm tương tự câu A
vậy B= \(\frac{1}{4}-\frac{1}{11}\)=\(\frac{7}{44}\)
a)\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)vaB=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
+)Ta có:\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\left(\frac{7}{32}+\frac{128}{32}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\frac{135}{32}\)
\(\Leftrightarrow A=\frac{992}{736}-\frac{3105}{736}\)
\(\Leftrightarrow A=\frac{-2113}{736}\left(1\right)\)
+)Ta lại có:\(B=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{-67}{67}+\frac{41}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(-1\right)+1\)
\(\Leftrightarrow B=\frac{1}{3}\left(2\right)\)
+)Từ (1) và (2)
\(\Leftrightarrow A< 0< B\Leftrightarrow A< B\)
Vậy A<B
b)\(\frac{200420042004}{200520052005}va\frac{2004}{2005}\)
+)Ta có \(\frac{200420042004}{200520052005}=\frac{2004.100010001}{2005.100010001}=\frac{2004}{2005}\)
\(\Leftrightarrow\frac{200420042004}{200520052005}=\frac{2004}{2005}\)
c)\(C=\frac{2020^{2006}+1}{2020^{2007}+1}vaD=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(C=\frac{2020^{2006}+1}{2020^{2007}+1}< 1\)
\(\Leftrightarrow C< \frac{2020^{2006}+1+2019}{2020^{2007}+1+2019}=\frac{2020^{2006}+2020}{2020^{2007}+2020}=\frac{2020.\left(2020^{2005}+1\right)}{2020.\left(2020^{2006}+1\right)}=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(\Leftrightarrow C< D\)
Chúc bạn học tốt
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)
a) \(\frac{21}{52}=\frac{210}{520}=1-\frac{310}{520}\)
\(\frac{213}{523}=1-\frac{310}{523}\)
Vì \(520< 523\)\(\Rightarrow\frac{1}{520}>\frac{1}{523}\)\(\Rightarrow\frac{310}{520}>\frac{310}{523}\)
\(\Rightarrow1-\frac{310}{520}< 1-\frac{310}{523}\)
hay \(\frac{21}{52}< \frac{213}{523}\)
b) \(\frac{1515}{9797}=\frac{15.101}{97.101}=\frac{15}{97}\); \(\frac{171171}{991991}=\frac{171.1001}{991.1001}=\frac{171}{991}\)
Ta có: \(\frac{15}{97}=\frac{150}{970}=1-\frac{820}{970}\); \(\frac{171}{991}=1-\frac{820}{991}\)
Vì \(970< 991\)\(\Rightarrow\frac{1}{970}>\frac{1}{991}\)\(\Rightarrow\frac{820}{970}>\frac{820}{991}\)
\(\Rightarrow1-\frac{820}{970}< 1-\frac{920}{991}\)
hay \(\frac{1515}{9797}< \frac{171171}{991991}\)
c) \(\frac{n+2}{n+3}=1-\frac{1}{n+3}\); \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Vì \(n\inℕ^∗\)\(\Rightarrow n+3< n+4\)\(\Rightarrow\frac{1}{n+3}>\frac{1}{n+4}\)
\(\Rightarrow1-\frac{1}{n+3}< 1-\frac{1}{n+4}\)
hay \(\frac{n+2}{n+3}< \frac{n+3}{n+4}\)
d) \(\frac{n+7}{n+6}=1+\frac{1}{n+6}\); \(\frac{n+1}{n}=1+\frac{1}{n}\)
Vì \(n\inℕ^∗\)\(\Rightarrow n+6>n\)\(\Rightarrow\frac{1}{n+6}< \frac{1}{n}\)
\(\Rightarrow1+\frac{1}{n+6}< 1+\frac{1}{n}\)
hay \(\frac{n+7}{n+6}< \frac{n+1}{n}\)