Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)(ĐK:a,b,c khác 0)
TH1: a+b+c=0=> a=-(b+c)=> b=-(a+c)=> c=-(a+b)
\(\Rightarrow B=\left(\frac{a-a-c}{a}\right)\left(\frac{c-b-c}{c}\right)\left(\frac{b-a-b}{b}\right)=\frac{-c}{a}.\left(-\frac{b}{c}\right).\left(-\frac{a}{b}\right)=-1\)
xét a+b+c khác 0
=> a=b=c
=> \(B=\left(1+\frac{a}{a}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{c}{c}\right)=2^3=8\)
Vậy B=-1 hay B=8
p/s: bài này gây khá nhiều tranh cãi :>
a) \(\left[-\frac{1}{2}\left(a-1\right)x^3y^4z^2\right]^5=\frac{-\left(a-1\right)^5}{32}x^{15}y^{20}z^{10}\)
Hệ số: \(\frac{-\left(a-1\right)^5}{32}\). Bậc của đơn thức: \(15+20+10=45\)
b) \(\left(a^5b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right)=-a^5b^5cx^5y^2z^6\)
Hệ số: \(-a^5b^5c\). Bậc của đơn thức: \(5+2+6=13\)
c) \(\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{125}{27}a^3x^{15}y^6z^3\right)\)\(=\frac{25}{6}a^6x^{17}y^7z^3\)
Hệ số: \(\frac{25}{6}a^6\). Bậc của đơn thức:\(17+7+3=27\)
Câu hỏi của Hà My Trần - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo câu hỏi ở link này.
Ta có: a+b+c=0a+b+c=0
\Rightarrow b+a=-c⇒b+a=−c
\Rightarrow c+b=-a⇒c+b=−a
\Rightarrow a+c=-b⇒a+c=−b
Ta có: A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)A=(1+
b
a
)(1+
c
b
)(1+
a
c
)
\Rightarrow A=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)⇒A=(
b
b+a
)(
c
c+b
)(
a
a+c
)
\Rightarrow A=\left(\frac{-c}{b}\right)\left(\frac{-a}{c}\right)\left(\frac{-b}{a}\right)⇒A=(
b
−c
)(
c
−a
)(
a
−b
)
\Rightarrow A=-1⇒A=−1
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a+b+c+a+b+c\right)-\left(a+b+c\right)}{a+b-c}=\frac{a+b+c}{a+b+c}=1\)
\(=>\frac{a+b-c}{c}=1=>a+b-c=c=>a+b=c+c=2c\)
\(=>\frac{a-b+c}{b}=1=>a-b+c=b=>a+c=b+b=2b\)
\(=>\frac{-a+b+c}{a}=1=>-a+b+c=a=>b+c=a+a=2a\)
\(=>M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8.abc}{abc}=8\)
Vậy M=8
\(\frac{a+b}{x}=\frac{a+c}{13}=\frac{b-c}{x-13}=\frac{2a+b+c}{x+13}\)
\(\Rightarrow\hept{\begin{cases}\frac{a+c}{b-c}=\frac{13}{x-13}\\\frac{a+c}{2a+b+c}=\frac{13}{x+13}\end{cases}}\)
\(\Rightarrow\frac{\left(a+c\right)^2}{\left(2a+b+c\right)\left(b-c\right)}=-\frac{169}{27}\)
\(\Leftrightarrow\frac{\left(a+c\right)}{\left(2a+b+c\right)}.\frac{\left(a+c\right)}{\left(b-c\right)}=-\frac{169}{27}\)
\(\Leftrightarrow\frac{13}{x-13}.\frac{13}{x+13}=-\frac{169}{27}\)
\(\Leftrightarrow\left(x-13\right)\left(x+13\right)=-27\)
\(\Leftrightarrow x^2-169=-27\)
\(\Leftrightarrow x^2=142\)
Làm nốt
ĐK: x khác 0, x khác 13, x khác -13
Vì a+c khác 0 => a+b khác 0
\(\frac{a+b}{x}=\frac{a+c}{13}=\frac{2a+c+b}{x+13}=\frac{b-c}{x-13}\)
\(\Rightarrow\frac{\left(a+c\right)^2}{13^2}=\frac{2a+c+b}{x+13}.\frac{b-c}{x-13}\Rightarrow\frac{\left(a+c\right)^2}{\left(2a+c+b\right)\left(b-c\right)}=\frac{13^2}{\left(x+13\right)\left(x-13\right)}=\frac{169}{\left(x+13\right)\left(x-13\right)}\)
Từ đề ra
=> (x+13)(x-13)=-27. Em làm tiếp nhé!
Bài làm:
Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)
\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)
\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)
Thay vào ta tính được a và b
b,c tương tự a
a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)
\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)
\(a.b.c=\frac{3}{5}\)
\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)
b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)
\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)
Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5
Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5
c,ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a:
ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= 2*3 = 6 (thỏa)
_Với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= -2*3 = -6 (thỏa)
_Với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
Lời giải :
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(A=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}\)
Theo giả thiết : \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Thay vào A ta được :
\(A=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
Vậy...
Giải hộ mình nha