Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta cần điền để 2*7* ⋮ 2; 3; 5
Để 2*7* ⋮ 2 và 5 thì * cuối = 0
Ta có 2*70
Để 2*70 ⋮ 3 thì 2 + * + 7 + 0 ⋮ 3
hay 9 + * ⋮ 3
=> * thuộc { 0; 3; 6; 9 }
Vậy.........
câu 1 khỏi cần làm dễ cô ra rồi
b) => x - 2 \(\in\) ƯC ( 32; 18)
Mà Ư (32) = {1; 2 ; 4 ; 8; 16 ; 32 }
Ư(18) = { 1 ; 2 ; 3 ; 6 ; 8 ; 18}
=> ƯC ( 32 ; 18) = { 1 ; 2 ; 8 }
đến đây chác làm được rồi
x = 3 ; 4 ; 10
câu c như thế thôi
=> x - 2 \(\in\)
Ta có: S=30+42-6+x
=>S=72-6+x
=>S=66+x
a)Để S chia hết cho 6
=>66+x chia hết cho 6
Mà 66 chia hết cho 6
=>x chia hết cho 6
=>x=6n(m\(\in\)N)
Vậy x=6m
b)Để S không chia hết cho 3
=>66+x không chia hết cho 3
Mà 66 chia hết cho 3
=>x không chia hết cho 3
=>x\(\ne\)3n
=>x=3n+1,3n+2
Vậy x=3n+1,3n+2
a) Để \(-1:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
b) Để \(1:x+1\)là số nguyên
\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)
+ \(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)
Vậy \(x\in\left\{-2; 0\right\}\)
c) Để \(-2:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1;-2;1;2\right\}\)
d) Để \(3:x-2\)là số nguyên
\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1;1;3;5\right\}\)
e) Ta có: \(x+8=\left(x-7\right)+15\)
- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)
\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(x-7\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(x\) | \(6\) | \(8\) | \(4\) | \(10\) | \(2\) | \(12\) | \(-8\) | \(22\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)
f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)
- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)
\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)
- Ta có bảng giá trị:
\(x-5\) | \(-1\) | \(1\) | \(-19\) | \(19\) |
\(x\) | \(4\) | \(6\) | \(-14\) | \(24\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-14;4;6;24\right\}\)
g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)
- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)
\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)
- Ta có bảng giá trị:
\(x-8\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) | \(-16\) | \(16\) | \(-32\) | \(32\) |
\(x\) | \(7\) | \(9\) | \(6\) | \(10\) | \(4\) | \(12\) | \(0\) | \(16\) | \(-8\) | \(24\) | \(-24\) | \(40\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)
h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)
- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(0\) | \(2\) | \(-6\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)
- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)
\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(x\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)
\(x⋮12\)Và \(12\le x< 50\)
\(x⋮12\Rightarrow x\in B\left(12\right)\)
\(\Rightarrow x\in\left\{12;24;36;48\right\}\)
\(\left(x+5\right)⋮\left(x-1\right)\)
\(\Rightarrow x-1+6⋮x-1\)
Vì \(x-1⋮x-1\Rightarrow6⋮x-1\)
\(\Rightarrow x-1\inƯ\left(6\right)\)
\(\Rightarrow x-1\in\left\{1;2;3;6\right\}\)
Ta có các trường hợp
\(x-1=1\Rightarrow x=2\)
\(x-1=2\Rightarrow x=3\)
\(x-1=3\Rightarrow x=4\)
\(x-1=6\Rightarrow x=7\)
\(\Rightarrow x\in\left\{2;3;4;7\right\}\)
a, Theo bài ra ta có :
\(\hept{\begin{cases}x⋮12\\12\le x< 50\end{cases}}\)
Vì \(x⋮12\Rightarrow x\in B\left(12\right)\)
\(B\left(12\right)=\left\{12;24;36;48;60;72;...\right\}\)
Mà \(12\le x< 50\)
\(\Rightarrow x=\left\{12;24;36;48\right\}\)
Vì x nhỏ nhất khác 0, x chia hết cho 24,40 và 168 nên ta có:
x=BCNN(24;40;168)
Mặt khác, ta có:
24=23 x3
40=23x5
168=23x3x7
=> x=23x3x5x7=840
Vậy x=840
TL :
Vì x \(⋮\)cho 24 , 40 , 168
Mà x lại bé nhất
Vậy \(\Rightarrow\)x là BCNN( 24,40,168 )
Mà BCNN( 24,40,168 ) = 840
Vậy ta kết luận : \(x=840\)