Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
\(\frac{8n+193}{4n+3}=\frac{2.4n+2.3+187}{4n+3}\)
\(=\frac{2.\left(4n+3\right)+187}{4n+3}\)
\(=2+\frac{187}{4n+3}\)
Để M có giá trị là số tự nhiên thì \(4n+3\)phải là ước tự nhiên của \(187=\left\{1;11;17;187\right\}\)
\(\left(+\right)4n+3=1\Rightarrow4n=1-3=-2\Leftrightarrow n=-\frac{1}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=11\Rightarrow4n=11-3=8\Leftrightarrow n=2\)( thỏa mãn )
\(\left(+\right)4n+3=17\Rightarrow4n=14\Leftrightarrow n=\frac{7}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=187\Rightarrow4n=187-3=184\Leftrightarrow n=46\)( thỏa mãn )
Vậy \(n\in\left\{2;46\right\}.\)
b. Gọi ước chung của 8n + 193 và 4n + 3 là d
Ta có:
\(\hept{\begin{cases}8n+193⋮d\\4n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}8n+193⋮d\\2\left(4n+3\right)⋮d\end{cases}}\)
\(\Rightarrow8n+193-2\left(4n+3\right)⋮d\)
\(\Leftrightarrow187⋮d\)
\(\Rightarrow d\inƯ\left(187\right)=\left\{1;11;17;187\right\}\)
Thử:
\(n=156\Rightarrow M=\frac{77}{19}\)
\(n=165\Rightarrow M=\frac{89}{39}\)
\(n=167\Rightarrow M=\frac{139}{61}.\)
\(M=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\inℕ^∗\Rightarrow\frac{187}{4n+3}\inℕ^∗\)
Vì \(n\inℕ^∗\Rightarrow4n+3\inℕ^∗\Rightarrow4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{\pm1;\pm11;\pm17;\pm187\right\}\)
\(\Rightarrow n\in\left\{-1;2;-5;46\right\}\)
b. M rút gọn được <=> \(\frac{187}{4n+3}\)rút gọn được => 4n+3 chia hết cho 11, 17 hoặc 187
Mà \(150\le n\le170\Rightarrow603\le4n+3\le683\)
Ta có: trong khoảng từ 603 -> 683 chỉ có:
+ 605, 616, ..., 682 chia hết cho 11 => 4n+3 \(\in\){605, 616, ..., 682} => Tìm n
+ 612, 629, ..., 680 chia hết cho 17 => \(4n+3\in\left\{612,629,...,680\right\}\)=> tìm n
+ không có số nào chia hết cho 187
1, để B nguyên
=> n + 7 ⋮ 3n - 1
=> 3n + 21 ⋮ 3n - 1
=> 3n - 1 + 22 ⋮ 3n - 1
=> 22 ⋮ 3n - 1
2, tương tự thôi bạn
\(\frac{8n+21}{4n+3}=\frac{2.\left(4n+3\right)+15}{4n+3}=\frac{2.\left(4n+3\right)}{4n+3}+\frac{15}{4n+3}=2+\frac{15}{4n+3}\)
Để \(\frac{15}{4n+3}\in Z\) <=> 15 ⋮ 4n + 3 => 4n + 3 ∈ Ư ( 15 ) = { - 15 ; - 5 ; - 3 ; - 1 ; 1 ; 3 ; 5 ; 15 }
=> 4n ∈ { - 18 ; - 8 ; - 6 ; - 4 ; - 2 ; 0 ; 2 ; 12 }
=> n ∈ { - 2 ; - 1 ; 0 ; 3 }
a) \(\frac{8n+21}{4n+3}\left(n\ne\frac{-3}{4}\right)\)
\(=\frac{2\left(4n+3\right)+15}{4n+3}=2+\frac{15}{4n+3}\)
Để \(\frac{8n+21}{4n+3}\)nguyên => \(\frac{15}{4n+3}\)nguyên
=> 4n+3 =Ư(15)={-15;-5;-3;-1;1;3;515}
tự lập bảng làm tiếp
*) 2 câu còn lại làm tương tự
b) \(\frac{2n+5}{2n-1}\left(n\ne\frac{1}{2}\right)\)
\(=\frac{2n-1+6}{2n-1}=1+\frac{6}{2n-1}\)
=> \(\frac{6}{2n-1}\)phải đạt giá trị nguyên
vì n là số tự nhiên => 2n-1 là số tự nhiên
=> 2n-1=Ư(6)={1;2;3;6}
vì 2n-1 là số lẻ => 2n-1={1;3}
nếu 2n-1=1 => n=1 (tmđk)
nếu 2n-1=3 => n=2 (tmđk)
vậy n=1; n=2
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
Ta có:\(\frac{8n+21}{4n+3}=\frac{2\left(4n+3\right)+15}{4n+3}=2+\frac{15}{4n+3}\)
Để \(\frac{8n+21}{4n+3}\)là số nguyên thì \(\frac{15}{4n+3}\)là số nguyên
vì n là số tự nhiên => 4n+3 là số tự nhiên
15 chia hết cho 4n+3 => 4n+3\(\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Ta có bảng
Vậy n={0;3} thì \(\frac{8n+21}{4n+3}\)là số nguyên
\(\frac{8n+21}{4n+3}\)là số nguyên
ĐKXĐ: n > 0
Ta có : \(\frac{8n+21}{4n+3}=\frac{2\left(4n+3\right)+15}{4n+3}=2+\frac{15}{4n+3}\)
Để \(\frac{8n+21}{4n+3}\)là số nguyên => \(\frac{15}{4n+3}\)là số nguyên
=> \(15⋮4n+3\)( n > 0 )
=> \(4n+3\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Ta có bảng sau:
Vì n > 0 => n thuộc { 0; 3}