Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\frac{3n+2}{n+1}=\frac{3\left(x+1\right)-1}{n+1}=\frac{-1}{n+1}\)
=> n + 1 \(\in\)Ư(-1) = {1;-1}
Tự lập bảng xét giá trị bn nhé !
Bài 2 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow30=x\left(1+2y\right)\)
Tự lập bảng nhé !
x - 2 = -3
x = -3 + 2
x = -1
x + 4 = -2
x = -2 - 4
x = -6
x - (-4) = 1
x + 4 = 1
x = 1 - 4
x = -3
x + 8 = -5 + 4
x + 8 = -1
x = -1 - 8
x = -9
x-2=-3
x = -3+2
x=-1
x+4=-2
x=(-2)-4
x=-6
x-2=-6
x=-6+2
x=-4
x-(-4)=1
=> x+4=1
x= 1-4
x=-3
x+8=-5+4
x+8=-1
x=-1-8
x=-9
lm 1 câu thoi , bệnh lười bn ạ !!!
\(a,\left(x+1\right)\left(y-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Trả lời:
Tương tự ๖ۣۜʚ๖ۣۜQủү☼Dữ๖ۣۜɞ๖ۣۜ ( Cool Team ), bạn xét các ước của các tích rồi lập bảng sẽ tìm đc x.
VD:
b, (x - 5) . (y - 7) = 1
TH1: \(\hept{\begin{cases}x-5=1\\y-7=1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}}\)
TH2: \(\hept{\begin{cases}x-5=-1\\y-7=-1\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}}\)
~Std well~
a) -2. (x+ 6) + 6. (x - 10) =8
<=> -2x - 12 + 6x - 60 = 8
<=> 4x = 36
<=> x = 9
b) -4. (2x + 9) - (-8x + 3) - (x + 13) = 0
<=> -8x - 36 + 8x - 3 - x - 13 = 0
<=> x = 52
c) 7x. (2 + x) - 7x. (x + 3) = 14
<=> 14x + 7x2 - 7x2 - 21x = 14
<=> -7x = 14
<=> x = -2
a) Để \(-1:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
b) Để \(1:x+1\)là số nguyên
\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)
+ \(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)
Vậy \(x\in\left\{-2; 0\right\}\)
c) Để \(-2:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1;-2;1;2\right\}\)
d) Để \(3:x-2\)là số nguyên
\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1;1;3;5\right\}\)
e) Ta có: \(x+8=\left(x-7\right)+15\)
- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)
\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(x-7\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(x\) | \(6\) | \(8\) | \(4\) | \(10\) | \(2\) | \(12\) | \(-8\) | \(22\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)
f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)
- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)
\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)
- Ta có bảng giá trị:
\(x-5\) | \(-1\) | \(1\) | \(-19\) | \(19\) |
\(x\) | \(4\) | \(6\) | \(-14\) | \(24\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-14;4;6;24\right\}\)
g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)
- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)
\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)
- Ta có bảng giá trị:
\(x-8\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) | \(-16\) | \(16\) | \(-32\) | \(32\) |
\(x\) | \(7\) | \(9\) | \(6\) | \(10\) | \(4\) | \(12\) | \(0\) | \(16\) | \(-8\) | \(24\) | \(-24\) | \(40\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)
h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)
- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(0\) | \(2\) | \(-6\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)
- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)
\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(x\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)
a, \(\frac{x+4}{6}=\frac{1}{x+5}\)ĐKXĐ : x \(\ne\)-5
\(\left(x+4\right)\left(x+5\right)=6\)
TH1 : \(x+4=6\Leftrightarrow x=2\)
\(x+5=1\Leftrightarrow=-4\)
Tương tự đến hết
b, \(\frac{x+1}{2}=\frac{2}{x+2}\)ĐKXĐ : x \(\ne\)-2
\(\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Điều kiện xác định là đúng.Cj nghĩ phần a em sai rồi.
a, \(\frac{x+4}{6}=\frac{1}{x+5}\)
\(\left(x+4\right)\left(x+5\right)=6\)
\(x^2+9x+20=6\)
\(x^2+9x+14=0\)
\(\Delta=b^2-4ac=9^2-4.1.14=81-56=25>0\)
Nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-9-\sqrt{25}}{2.1}=\frac{-9-5}{2}=-\frac{14}{2}=-7\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-9+\sqrt{25}}{2}=\frac{-9+5}{2}=-\frac{4}{2}=-2\)