Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
chỉ sợ chị google đang trong phòng với ông google rồi.
theo mình thì chị Cốc Cốc thằng tiến nha bạn
làm nốt câu này rồi đi ngủ
\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)
Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN
Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)
Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được :
\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)
Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)
Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)
Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)
\(B=\frac{32-2x}{11-x}=\frac{11-x+21-x}{11-x}=1+\frac{21-x}{11-x}=1+\frac{11-x+10}{11-x}=2+\frac{10}{11-x}\)
để B lớn nhất thì \(\frac{10}{11-x}\)lớn nhất
\(\Rightarrow11-x\)nhỏ nhất(khác 0)
\(\Rightarrow x=10\)
\(\Rightarrow B=12\)tại \(x=10\)
Giả theo cách lớp 7 nha:
Đặt \(\hept{\begin{cases}\sqrt{6-x}=a\\\sqrt{x+2}=b\end{cases}}\)
\(\Rightarrow a^2+b^2=8\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow2ab\le a^2+b^2\)
\(\Leftrightarrow a^2+b^2+2ab\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\cdot8=16\)
\(\Leftrightarrow a+b\le4\)
Dấu = xảy ra khi \(a=b=2\)
\(\Leftrightarrow x=2\)
\(ĐKXĐ:-2\le x\le6\)
Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\le\sqrt{2.\left(a+b\right)}\) với \(a,b\ge0\) ta có :
\(y=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{2.\left(6-x+x+2\right)}=\sqrt{2.8}=4\)
Dấu "=" xảy ra \(\Leftrightarrow6-x=x+2\Leftrightarrow x=2\)
Vậy \(y_{min}=4\) khi \(x=2\)
a) Để \(C=\frac{3x+2}{x+1}=\frac{3x+3-1}{x+1}=\frac{3.\left(x+1\right)-1}{x+1}=3-\frac{1}{x+1}\)nguyên
=> 1/x+1 nguyên
=> 1 chia hết cho x + 1
=>...
bn tự làm tiếp nha
b) Để \(D=\frac{2x-1}{x-1}=\frac{2x-2+1}{x-1}=\frac{2.\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)nguyên
=>...
\(A=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để A lớn nhất thì \(\frac{3}{12-x}\) lớn nhất
\(\Leftrightarrow12-x\) nhỏ nhất
Với \(x>12\Rightarrow12-x< 0\Rightarrow A\) là số âm
Với \(x< 12\Rightarrow12-x>0\Rightarrow A_{max}=5\Leftrightarrow x=11\)
A = \(\frac{27-2X}{12-X}\)= \(\frac{24-2X+3}{12-X}\)= \(\frac{\left(12-X\right)\cdot2+3}{12-X}\)= 2 + \(\frac{3}{12-X}\)
Lúc này biểu thức A lớn nhất khi \(\frac{3}{12-x}\) đạt GTLN
Hay 12-x là số tự nhiên nguyên nguyên dương nhỏ nhất là 1 hay x = 11
Lúc này bt A có giá trị là 2+ \(\frac{3}{1}\)= \(2+3=5\)
Vậy bt A đạt GTLN là 5 khi x = 11