\(\frac{-8}{15}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

a) Ta có : \(\frac{-8}{15}=\frac{\left(-1\right)+\left(-7\right)}{15}=\frac{\left(-2\right)+\left(-6\right)}{15}=\frac{\left(-3\right)+5}{15}\)

Do đó \(\frac{-8}{15}=\frac{-1}{15}+\frac{-7}{15};\frac{-8}{15}=\frac{-2}{15}+\frac{-6}{15}=\frac{-2}{15}+\frac{-2}{5};\frac{-8}{15}=\frac{-3}{15}+\frac{-5}{15}=\frac{-1}{5}+\frac{-1}{3}\)

b) Ta có : \(\frac{-8}{15}=\frac{1-9}{15}=\frac{2-10}{15}=\frac{3-11}{15}\)

Do đó \(\frac{-8}{15}=\frac{1}{15}-\frac{9}{15}=\frac{1}{15}-\frac{3}{5};\frac{-8}{15}=\frac{2}{15}-\frac{10}{15}=\frac{2}{15}-\frac{2}{3};\frac{-8}{15}=\frac{3}{15}-\frac{11}{15}=\frac{1}{5}-\frac{11}{15}\)

c) Ta có : \(\frac{-8}{15}=\frac{9+\left(-17\right)}{15}=\frac{10+\left(-18\right)}{15}=\frac{11+\left(-19\right)}{15}\)

Do đó \(\frac{-8}{15}=\frac{9}{15}+\frac{-17}{15}=\frac{3}{5}+\frac{-17}{15}=\frac{3}{5}+\left(-1\frac{2}{15}\right);\)

\(\frac{-8}{15}=\frac{10}{15}+\frac{-18}{15}=\frac{2}{3}+\frac{-6}{5}=\frac{2}{3}+\left(-1\frac{1}{5}\right);\)

\(\frac{-8}{15}=\frac{11}{15}+\frac{-19}{15}=\frac{11}{15}+\left(-1\frac{4}{15}\right).\)

P/S : Hiếu tỉ là gì bạn ? Hữu tỉ mới đúng =))

24 tháng 8 2020

Hữu tỉ not hiếu tỉ ;-;

\(x=\frac{2a-4}{5}\)

a) Để x là số hữu tỉ dương

=> \(\frac{2a-4}{5}>0\)

=> \(2a-4>0\)( nhân cả hai vế cho 5 )

=> \(2a>4\)

=> \(a>2\)( chia cả hai vế cho 2 )

b) Để x là số hữu tỉ âm

=> \(\frac{2a-4}{5}< 0\)

=> \(2a-4< 0\)( nt )

=> \(2a< 4\)

=> \(a< 2\)( nt )

c) x không là số hữu tỉ âm , không là số hữu tỉ dương

=> x = 0

Để x = 0 

=> \(\frac{2a-4}{5}=0\)

=> \(2a-4=0\)

=> \(2a=4\)

=> \(a=2\)

24 tháng 8 2020

\(x=\frac{2a-4}{5}\)

để x là số hữu tỉ dương

\(\Rightarrow\frac{2a-4}{5}>0\) suy ra 2a-4 và 5 cùng dấu

 \(\Leftrightarrow\orbr{\begin{cases}2a-4>0\\5>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a>2\left(tm\right)\\5>0\end{cases}}\)

b) để x là số hữu tỉ âm

\(\Rightarrow\frac{2a-4}{5}< 0\) suy ra 2a-4 và 5 khác dấu 

\(\Leftrightarrow\orbr{\begin{cases}2a-4< 0\\5>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a< 2\left(tm\right)\\5>0\end{cases}}\)

7 tháng 8 2015

bài 1

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)

bài 2

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)

7 tháng 8 2015

bài 1:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> \(\frac{a}{b}=1\)  

  \(\frac{b}{c}=1\)  

  \(\frac{c}{a}=1\)

=> a=b   (1)

b=c    (2)

c=a     (3)

=> a=b=c

27 tháng 5 2019

Bài 1:

Ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)

=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)

=> ab = 92

Bài 2:

Hữu hạn: -7/16; 2/125; -9/8

Vô hạn tuần hoàn: -5/3; 5/6; -3/11

Chúc bạn học tốt !!!

28 tháng 5 2019

Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)

\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)

Vậy \(\overline{ab}=92\)

Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên  phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)

          Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)

a) \(\left(1-2x\right)^3=-8\)

\(\left(1-2x\right)^3=\left(-2\right)^3\)

\(1-2x=-2\)

\(2x=1-\left(-2\right)\)

\(2x=3\)

\(x=3:2\)

\(x=1,5\)

b) \(\left(2x-1\right)^3=-27\)

\(\left(2x-1\right)^3=\left(-3\right)^3\)

\(2x-1=-3\)

\(2x=-3+1\)

\(2x=-2\)

\(x=-2:2\)

\(x=-1\)

@Nghệ Mạt

#cua

14 tháng 11 2021

a) (1-2x)^3=-8

=>(1-2x)^3=(-2)^3

=>1-2x=-2

=>2x=-2-1

=>2x=-3

=>x=-3/2

vậy x=-3/2

b) (2x-1)^3=-27

=>(2x-1)^3=(-3)^3

=>2x-1=-3

=>2x=-3+1

=>2x=-2

=>x=-2/2

=>x=-1

vậy x=-1

11 tháng 9 2019

a,x=(-1/2)(-2)^3=4

b, x=1/16

11 tháng 9 2019

anh có thể viết phân số ra như này ko ạ:
\(\frac{3}{4}\)

viết như vậy em nhìn rối mắt lắm ạ!

15 tháng 1 2020

bài 1 : 

a, A = 3|2x - 1| - 5 = 0

có 3|2x - 1| >

=> A > -5

xét A = -5 khi 

|2x - 1| = 0

=> 2x - 1 = 0

=> 2x = 1

=> x = 1/2

vậy Min A = -5 khi x = 1/2

b, c, d, làm tương tự

17 tháng 1 2020

Bài 1:

\(a)A=3|2x-1|-5\)

Vì \(|2x-1|\ge0\)\(\forall x\)

\(\Rightarrow3|2x-1|\ge0\) \(\forall x\)

\(\Rightarrow3|2x-1|-5\ge-5\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Min_A=-5\Leftrightarrow x=\frac{1}{2}\)

\(b)x^2+3|y-2|-1\)

Vì \(\hept{\begin{cases}x^2\ge0\forall x\\3|y-2|\ge0\forall y\end{cases}}\)

\(\Rightarrow x^2+3|y-2|-1\ge-1\) \(\forall x,y\)

Dấu '=' xảy ra:

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy \(Min_B=-1\Leftrightarrow x=0,y=2\)

\(c)\left(2x^2+1\right)^4-3\)

Vì \(\left(2x^2+1\right)^4\ge0\)\(\forall x\)

\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x^2+1=0\)

\(\Leftrightarrow2x^2=-1\)

\(\Leftrightarrow x^2=-\frac{1}{2}\left(voli\right)\)

Vậy không tìm được gt x

\(d)D=|x-\frac{1}{2}|+\left(y+2\right)^2+11\)

Vì \(\hept{\begin{cases}|x-\frac{1}{2}|\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow|x-\frac{1}{2}|+\left(y+2\right)^2+11\ge11\) \(\forall x,y\)

Dấu '=' xảy ra:

\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)

Vậy \(Min_D=11\Leftrightarrow x=\frac{1}{2},y=-2\)

17 tháng 1 2020

Bài 2:

\(a)A=10-5|x-2|\)

Vì \(|x-2|\ge0\)\(\forall x\)

\(\Rightarrow5|x-2|\ge0\)\(\forall x\)

\(\Rightarrow\)\(10-5|x-2|\le10\) \(\forall x\)

Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(Max_A=10\Leftrightarrow x=2\)

\(b)B=5-|2x-1|^2\)

Vì \(|2x-1|^2\ge0\)\(\forall x\)

\(\Rightarrow5-|2x-1|^2\le5\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Max_B=5\Leftrightarrow x=\frac{1}{2}\)

\(c)C=\frac{1}{|x-2|+3}\)

Vì \(|x-2|\ge0\)\(\forall x\)

\(\Rightarrow|x-2|+3\ge3\) \(\forall x\)

\(\Rightarrow\frac{1}{|x-2|+3}\le\frac{1}{3}\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(Max_C=\frac{1}{3}\Leftrightarrow x=2\)