Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(4^{72}=\left(4^3\right)^{24}=64^{24}\)
\(8^{48}=\left(8^2\right)^{24}=64^{24}\)
\(\Rightarrow4^{72}=8^{48}\)
a) \(4^{72}=\left(2^2\right)^{72}=2^{144}\)
\(8^{48}=\left(2^3\right)^{48}=2^{144}\)
mà \(2^{144}=2^{144}\)=> \(4^{72}=8^{48}\)
b) \(2^{252}=\left(2^2\right)^{126}=4^{126}\)
mà \(4^{126}< 5^{127}\)=> \(5^{127}>2^{252}\)
\(18^{20}.45^5.5^{25}.8^{10}\)
\(=3^{40}.2^{20}.5^5.3^{10}.5^{25}.2^{30}\)
\(=3^{50}.2^{50}.5^{30}\)
\(=6^{50}.5^{30}\)
\(=\left(6^5\right)^{10}.\left(5^3\right)^{10}\)
\(=\left(6^5.5^3\right)^{10}\)
\(\left(x^2y\right)^5.\left(x^2.y^2\right)^7.\left(x.y\right)^6.x^3\)
\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^3.x^3\)
\(=x^{33}.y^{22}\)
\(=\left(x^3\right)^{11}.\left(y^2\right)^{11}\)
\(=\left(x^3.y^2\right)^{11}\)
\(2^7.3^8.4^9.9^8\)
\(=2^7.3^8.2^{18}.3^{16}\)
\(=2^{25}.3^{24}\)( mk chỉ làm được đến thế thôi )
Tham khảo nhé~
a) \(18^{20}.45^5.5^{25}.8^{10}\)
\(=\left(2.3^2\right)^{20}.\left(3^2.5\right)^5.5^{25}.\left(2^3\right)^{10}\)
\(=2^{20}.3^{40}.3^{10}.5^5.5^{25}.2^{30}\)
\(=2^{50}.3^{50}.5^{30}\)
\(=6^{50}.5^{30}\)
\(=\left(6^5\right)^{10}.\left(5^3\right)^{10}\)
\(=7776^{10}.125^{10}\)
\(=972000^{10}\)
b ) \(\left(x^2y\right)^5.\left(x^2.y^2\right)^7.\left(xy\right)^6.x^3\)
\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^6.x^3\)
\(=x^{33}.y^{25}\)
\(=x^{25}.y^{25}.x^8\)
\(=...\)
c) \(2^7.3^8.4^9.9^8\)
\(=2^7.3^8.\left(2^2\right)^9.\left(3^2\right)^8\)
\(=2^7.3^8.2^{18}.3^{16}\)
\(=2^{25}.3^{24}\)
\(=...\)( Câu c này hình như đề bài sai sót . Không chuyển thành lũy thừa được )
KO AI TRẢ LỜI THẾ MH TRẢ LỜI LUN !
\(a,4^{72}v\text{à}8^{48}\)
TA CÓ:\(4^{72}=\left(2^2\right)^{72}=2^{144}\)
\(8^{48}=\left(2^3\right)^{48}=2^{144}\)
\(\Rightarrow4^{72}=8^{48}\)
\(b,5^{127}v\text{à}2^{254}\)
TA CÓ:\(2^{252}2^{2\times127}=\left(2^2\right)^{127}=4^{127}\)
\(5^{127}>4^{127}\left(v\text{ì5>4}\right)\)\(5^{127}>4^{127}\left(v\text{ì}5>4\right)\)
\(\Rightarrow5^{127}>2^{254}\)
a) Ta có : 472 = 43.24 = (43)24 = 6424
848 = 82.24 = (82)24 = 6424
Ta thấy : 6424 = 6424 => 472 = 848
b) Ta có : 2254 = 22.127 = (22)127 = 4127
Vì 5 > 4 => 5127 > 2254
a,ta có:
\(3^5.5^7.5.3^2\)
\(=\left(3^5.3^2\right).\left(5.5^7\right)\)
\(=3^7.5^8\)
\(b=2^8.\left(2.2\right)^5.9^9\)
\(=2^8.2^{10}.9^9\)
\(=2^{18}.9^9\)
Ta có \(\frac{1}{9S}=\frac{9^{2017}+\frac{1}{9}}{9^{2017}+1}\)= \(\frac{9^{2017}+1-\frac{8}{9}}{9^{2017}+1}=1-\frac{\frac{8}{9}}{9^{2017}+1}\)
\(\frac{1}{9M}=\frac{9^{2016}+\frac{1}{9}}{9^{2016}+1}\)= \(\frac{9^{2016}+1-\frac{8}{9}}{9^{2016}+1}=1-\frac{\frac{8}{9}}{9^{2016}+1}\)
Vì \(9^{2016}+1< 9^{2017}+1\)=> \(\frac{\frac{8}{9}}{9^{2016}+1}>\frac{\frac{8}{9}}{9^{2017}+1}\)
=> \(1-\frac{\frac{8}{9}}{9^{2016}+1}< 1-\frac{\frac{8}{9}}{9^{2017}+1}\)=> \(\frac{1}{9}S< \frac{1}{9}M\Rightarrow S< M\)
( ghi lại đề )
Ta có :
\(\frac{1}{4}z=\frac{2^{100}+1}{2^{100}+4}=\frac{2^{100}+4-3}{2^{100}+4}=\frac{2^{100}+4}{2^{100}+4}-\frac{3}{2^{100}+4}=1-\frac{3}{2^{100}+4}\)
\(\frac{1}{4}t=\frac{2^{102}+1}{2^{102}+4}=\frac{2^{102}+4-3}{2^{102}+4}=\frac{2^{102}+4}{2^{102}+4}-\frac{3}{2^{102}+4}=1-\frac{3}{2^{102}+4}\)
Lại có :
\(\frac{3}{2^{100}+4}>\frac{3}{2^{102}+4}\)
\(\Leftrightarrow\)\(-\frac{3}{2^{100}+4}< -\frac{3}{2^{102}+4}\)
\(\Leftrightarrow\)\(1-\frac{3}{2^{100}+4}< 1-\frac{3}{2^{102}+4}\)
\(\Leftrightarrow\)\(\frac{1}{4}z< \frac{1}{4}t\)
\(\Leftrightarrow\)\(z< t\)
Vậy \(z< t\)
Chúc bạn học tốt ~
ta có: \(T=\frac{2^{102}+1}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)-3}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)}{2^{100}+1}-\frac{3}{2^{100}+1}\)\(=4-\frac{3}{2^{100}+1}\)
\(Z=\frac{2^{100}+1}{2^{98}+1}=\frac{2^2.\left(2^{98}+1\right)-3}{2^{98}+1}=4-\frac{3}{2^{98}+1}\)
\(\Rightarrow\frac{3}{2^{100}+1}< \frac{3}{2^{98}+1}\)
\(\Rightarrow4-\frac{3}{2^{100}+1}>4-\frac{3}{2^{98}+1}\)
\(\Rightarrow T>Z\)
ta có: 298 < 2100
=> 298+1<2100+1
\(\Rightarrow\frac{2^{102}+1}{2^{98}+1}>\frac{2^{102}+1}{2^{100}+1}\)
\(2^{2464}>2^{2463}=\left(2^3\right)^{821}=8^{821}\)
Có \(8^{821}>7^{821}\)
\(\Rightarrow2^{2464}>7^{821}\)