Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải :
8.1 x+y=xy
⇒x-xy+y=0
⇒x(1-y)+(y-1)+1=0
⇒(x-1)(1-y)+1=0
⇒(x-1)(y-1)-1=0
⇒(x-1)(y-1)=1
⇒x-1, y-1 là ước của 1
⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1
⇒(x;y)=(2;2),(0;0)
8.3. 5xy-2y²-2x²+2=0
⇔(x-2y)(y-2x)+2=0
⇔(x-2y)(2x-y)=2
⇒x-2y và 2x-y là ước của 2
Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath
Em tham khaoe link trên.
\(4n^2\left(n+2\right)+4n\left(n+2\right)=\left(n+2\right)\left(4n^2+4n\right)=4n\left(n+1\right)\left(n+2\right)\)
Đặt \(A=n\left(n+1\right)\left(n+2\right)\) ta có
+ Nếu n chẵn => A chia hết cho 2
+ Nếu n lẻ thì n+1 chia hết cho 2 => A chia hết cho 2
=> A chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 với mọi n
=> A đồng thời chia hết cho cả 2 và 3 với mọi n => A chia hết cho 6 với mọi n => A có thể biểu diễn thành A=6.k
=> 4A=4.6.k=24.k chia hết cho 24 (dpcm)
4n2(n+2)+4n(n+2)
=4n(n+2)(n+1)
Ta có: 24=2.3.4 và ƯCLN(2,3,4)=1 nên ta chứng minh 4n(n+2)(n+1) chia hết cho 2,3 và 4
n chia cho 2 sẽ có 2 dạng là 2k và 2k+1 (k\(\in\)Z)
+) Với n = 2k thì \(n⋮2\)=> 4n(n+1)(n+2)\(⋮2\)(1)
+) Với n = 2k+1 thì n+1=2k+2
Vì 2k+2\(⋮2\)nên 4n(n+1)(n+2)\(⋮2\)(2)
Từ (1) và (2) => 4n(n+1)(n+2)\(⋮\)2 với mọi n\(\in Z\)
n chia cho 3 có 3 dạng là: 3m+1, 3m+2 và 3m
+) Với n = 3m thì n\(⋮\)3 => 4n(n+1)(n+2)\(⋮\)3 (3)
+) với n = 3m+1 thì n+2=3m+1+2=3m+3
Vì 3m+3\(⋮3\) nên 4n(n+1)(n+2)\(⋮3\)(4)
+) Với n = 3m+2 thì n+1=3m+2+1=3m+3
Vì 3m+3\(⋮3\)nên 4n(n+1)(n+2)\(⋮3\)(5)
Từ (3)(4)(5) => 4n(n+1)(n+2)\(⋮3\)với mọi \(n\in Z\)
Vì 4\(⋮\)4 nên 4n(n+1)(n+2)\(⋮4\)
Ta có: 4n(n+1)(n+2) chia hết cho 2,3,4
=> 4n(n+1)(n+2) \(⋮24\)với mọi \(n\in Z\)
Vậy 4n2(n+2)+4n(n+2)\(⋮24\)với mọi\(n\in Z\)
1. x+y=xy
=> x-xy+y=0
=> x(1-y)+y=0
=> x(1-y)+y -1 =-1
=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1
* 1-y=-1 => y=2
x-1=1=> x=2
* 1-y =1 => y=0
x-1=-1 => x=0
1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao
a. Biểu thức ko thể biểu diễn dưới dạng tích của các thừa số
b. (x-1)(4x+1)
c. -(3z^2-5y^2-6xy-3x^2)
d. x(y^2-2xy+x-9)
e. -(y-x)(y-x+2)
f. y^3+xy^2+3x^2y-y+x^2-x
HỌC TỐT.
\(2,n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Vì n lẻ \(\Rightarrow\)n có dạng \(2k+1\), thay vào ta có :
\(\Rightarrow\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right).2k.\left(2k+2\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì \(k\left(k+1\right)\left(k+2\right)\)là 3 số tự nhiên liên tiếp
\(\Rightarrow k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(6\)
\(\Leftrightarrow8k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(48\)
\(\Rightarrow n^3+3n^2-n-3\)\(⋮\)\(48\)\(\left(đpcm\right)\)
Đề câu 1 bài đầu tiên sai rồi em. VD như n=3 lẻ thì n^2+4n+8 =29 không chia hết cho 8
Đề bài đúng: \(n^2+4n+3\) chia hết cho 8 với mọi n lẻ
Chứng minh:
\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)
Vì n lẻ nên : n=2k+1, k thuộc N
Ta có: \(n^2+4n+3=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)
Vì (k+1) và (k+2) là hai số tự nhiên liên tiếp nên tích của nó sẽ chia hết cho 2
=> 4 (k+1)(k+2) chia hết cho 8
nên \(n^2+4n+3\)chia hết cho 8 với n là số tự nhiên lẻ.