Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=2^0+2^1+2^2+...+2^{2010}\)
\(=>2A=2^1+2^2+2^3+...+2^{2011}\)
\(=>2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(=>2A=2^{2011}-2^0=2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(=>A=B\)
a) Ta có : A=1+2+22+...+22010
2A=2+22+23+...+22011
\(\Rightarrow\) 2A-A=(2+22+23+...+22011)-(1+2+22+...+22010)
\(\Rightarrow\) A=22011-1
Mà B=22011-1
\(\Rightarrow\)A=B
Vậy A=B.
b) Ta có : A=2009.2011
B=20102=2010.2010
\(\Rightarrow\)A=2009.2010+2009
B=2009.2010+2010
Vì 2009<2010 nên 2009.2010+2009<2009.2010+2010
hay A<B
Vậy A<B.
A=20+21+22+...+22010
=>2A=21+22+23+...+22011
=>2A-A=(21+22+23+...+22011)-(20+21+22+...+22010)
=>A=22011-1=B
Vậy A=B
A = 20 + 21 + ..... + 22010
2A = 21 + 22 + ..... + 22011
2A - A = 22011 - 1
Mà B = 22011 - 1
=> A = B
A=1+2+22+23+...+22008
=2-1+22-2+23-22+24-23+...+22009-22008
=22009-1=B
vậy A=B
\(Q=\frac{2010+2011+2012}{2011+2012+2013}\)
\(Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Ta có :
\(\hept{\begin{cases}\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\\\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\\\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\end{cases}}\)
\(\Rightarrow P>Q\)
A = 1+2+22+23+...+22011+22012
2A = 2+22+23+24+.....+22012+22013
2A - A = ( 2+22+23+24+....+22012+22013 ) - ( 1+2+22+23+.....+22011+22012 )
A = 22013 - 1 < 22013
=> A < B