K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BN mún hỏi j vậy, đây k phải câu hỏi, mà có thì phải là toán lớp 6

1 tháng 3 2022

ủa toán lớp mấy chứ ko phải lớp 1

5 tháng 10 2019

Bài 1

\(a,\frac{3}{5}+\left(-\frac{1}{4}\right)=\frac{7}{20}\)

\(b,\left(-\frac{5}{18}\right)\cdot\left(-\frac{9}{10}\right)=\frac{1}{4}\)

\(c,4\frac{3}{5}:\frac{2}{5}=\frac{23}{5}\cdot\frac{5}{2}=\frac{23}{2}\)

Bài 2

\(a,\frac{12}{x}=\frac{3}{4}\Rightarrow3x=12\cdot4\)

\(\Rightarrow3x=48\)

\(\Rightarrow x=16\)

\(b,x:\left(-\frac{1}{3}\right)^3=\left(-\frac{1}{3}\right)^2\)

\(\Rightarrow x=\left(-\frac{1}{3}\right)^2\cdot\left(-\frac{1}{3}\right)^3=\left(-\frac{1}{3}\right)^5\)

\(\Rightarrow x=-\frac{1}{243}\)

\(c,-\frac{11}{12}\cdot x+0,25=\frac{5}{6}\)

\(\Rightarrow-\frac{11}{12}x=\frac{5}{6}-\frac{1}{4}=\frac{7}{12}\)

\(\Rightarrow x=\frac{7}{12}:\left(-\frac{11}{12}\right)\)

\(\Rightarrow x=-\frac{7}{11}\)

\(d,\left(x-1\right)^5=-32\)

\(\left(x-1\right)^5=-2^5\)

\(x-1=-2\)

\(x=-2+1=-1\)

Bài 3

\(\left|m\right|=-3\Rightarrow m\in\varnothing\)

Bài 3

Gọi 3 cạnh của tam giác lần lượt là a;b;c ( a,b,c>0)

Ta có

\(a+b+c=13,2\)

\(\frac{a}{3};\frac{b}{4};\frac{c}{5}\)

Ap dụng tính chất DTSBN ta có

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{13,2}{12}=\frac{11}{10}\)

\(\hept{\begin{cases}\frac{a}{3}=\frac{11}{10}\\\frac{b}{4}=\frac{11}{10}\\\frac{c}{5}=\frac{11}{10}\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{33}{10}\\b=\frac{44}{10}=\frac{22}{5}\\c=\frac{55}{10}=\frac{11}{2}\end{cases}}\)

Vậy 3 cạnh của tam giác lần lượt là \(\frac{33}{10};\frac{22}{5};\frac{11}{2}\)

a)\(\frac{3}{5}+\left(-\frac{1}{4}\right)\)

\(=\frac{3}{5}-\frac{1}{4}\)

\(=\frac{12}{20}-\frac{5}{20}=\frac{7}{20}\)

b)\(\left(-\frac{5}{18}\right)\left(-\frac{9}{10}\right)\)

\(=\frac{\left(-5\right)\left(-9\right)}{18.10}\)

\(=\frac{\left(-1\right)\left(-1\right)}{2.2}=\frac{1}{4}\)

c)\(4\frac{3}{5}:\frac{2}{5}\)

\(=\frac{23}{5}:\frac{2}{5}\)

\(=\frac{23}{5}.\frac{5}{2}\)

\(=\frac{23.1}{1.2}=\frac{23}{2}\)

1/

a)\(\frac{12}{x}=\frac{3}{4}\)

\(\Rightarrow x.3=12.4\)

\(\Rightarrow x.3=48\)

\(\Rightarrow x=48:3=16\)

b)\(x:\left(\frac{-1}{3}\right)^3=\left(\frac{-1}{3}\right)^2\)

\(x=\left(\frac{-1}{3}\right)^2.\left(\frac{-1}{3}\right)^3\)

\(x=\frac{\left(-1\right)^2}{3^2}.\frac{\left(-1\right)^3}{3^3}\)

\(x=\frac{1}{9}.\frac{-1}{27}=-\frac{1}{243}\)

9 tháng 1 2021

bạn trung học hay tiểu học vậy

30 tháng 7 2016

b, 3x^3+3x^2+3x+1=0<=>2x^3+(x+1)^3=0<=> .
Hằng đẳng thức đi bác 

26 tháng 2 2022

đây đích thực có phải lớp 1 ko bn?

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

8 tháng 7 2016

Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

Có:

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(...\)

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\)

\(\Rightarrow A< \frac{1}{2^2}.1=\frac{1}{4}\)

20 tháng 11 2017

câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu

câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)

28 tháng 12 2017

thế mà bảo toán lớp 1 

29 tháng 12 2017

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c