K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AA
19 tháng 8 2014

Bạn kiểm tra lại, hình như đều là lũy thừa 3 ở các mẫu số chứ?

7 tháng 11 2018

Đặt \(A=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2014^3}< B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2013.2014.2015}\)

Mà \(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2013.2014.2015}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\)

\(=\frac{1}{2}-\frac{1}{2014.2015}< \frac{1}{2}\)

\(\Rightarrow B< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

7 tháng 11 2018

Mình thấy bạn trả lời sai sai hay sao đấy

8 tháng 1 2016

a) 4.(x-3)<0 khi 4 và x-3 là hai số nguyên khác dấu

mà 4>0 suy ra x-3<0

                      x<3

Vậy với x<3 thì 4.(x-3)<0

b) -2.(x+1)<0 khi -2 và x+1 là hai số nguyên khác dấu

mà -2<0 suy ra x+1>0

                       x>1

Vậy với x>1 thì -2.(x+1)<0

   

10 tháng 1 2016

khó nhỉ .

10 tháng 1 2016

em chịu

21 tháng 4 2019

Đặt \(S=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)

           \(\frac{1}{4^2}< \frac{1}{3.4}\)

           . ....................

           \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow S< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

\(\Rightarrow S< \frac{1}{2}\)

21 tháng 4 2019

1/3^2 +1/4^2 +...+ 1/100^2 < 1/2.3+1/3.4+ 1/4.5 +...+ 1/99.100

1/3.3 +1/4.4 +...+ 1/100.100 < 1/2 -1/3 +1/3_1/4 +..+ 1/99-1/100

1/3.3 +1/4.4 +...+ 1/100.100 < 1/2 -1/100

1/3.3 +1/4.4 +...+ 1/100.100  < 50/100 -1/100

1/3.3 +1/4.4 +...+ 1/100.100   < 49/100

1/3.3 +1/4.4 +...+ 1/100.100 < 49/100 <50/100 = 1/2

\(\Rightarrow\)1/3^2 +1/4^2 +...+ 1/100^2    < 1/2

6 tháng 4 2015

Bài này cũng khó:

1/2! +2/3! +3/4! +... + 99/100! 
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!) 
=1 - 1/100! <1 

6 tháng 4 2015

Gọi số tự nhiên n. Ta có:

\(\frac{n-1}{n!}=\frac{n+1-1}{n!}=\frac{n+1}{n!}-\frac{1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\).

Thay n lần lượt bằng 2,3,...,100.Ta có A = \(\frac{1}{1!}-\frac{1}{100!}<1\Rightarrow A<1\)

24 tháng 7 2018

A=1.1+2.2+3.3+...+99.99+100.100

3A=1.2.3+2.3.(4-1)+...99.100.(101-98)

3A=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100

3A=99.100.101=999900

A= 999900:3=333300

24 tháng 7 2018

\(A=1^2+2^2+3^2+...+100^2\)

\(\Rightarrow A=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)

\(\Rightarrow A=1.2-1+2.3-2+3.4-3+...+100.101-100\)

\(\Rightarrow A=1.2+2.3+...+100.101-\left(1+2+3+...+100\right)\)

\(\Rightarrow A=\frac{100.101.102}{3}-\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}=\frac{100.101.102.2}{6}-\frac{101.100.3}{6}\)

\(\Rightarrow A=\frac{100.101\left(102.2-3\right)}{6}\)

2 tháng 5 2015

minh chiu kho qua thong cam nha !!!!!!!!!!!!!! hi hi