Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*
Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
Vậy 1 < M < 2 nên M không phải là số tự nhiên/
\(\frac{x-4}{y-3}=\frac{4}{3}\Rightarrow\frac{x-4}{4}=\frac{y-3}{3}\)
Áp dụng TC của DTSBN ta có:
\(\frac{x-4}{4}=\frac{y-3}{3}=\frac{x-4-y+3}{4-3}=\frac{5-1}{1}=4\)
Suy ra: (x-4)/4=4 =>x-4=16=>x=20
(y-3)/3=4=>y-3=12=>x=15
x-4/y-3=4/3
=>3.(x-4)=4.(y-3)
=>3x-12=4y-12
=>3x=4y
Mà x-y=5=>x=y+5
=>3.(y+5)=4y
=>3y+15=4y=>4y-3y=15=>y=15
Khi đó x=15+5=20
Vậy x=20;y=15
xy+3x-7y=21
<=> x(y+3) -7y = 21
<=> x(y+3) = 21+7y
<=> x(y+3) = 7(y+3)
<=> (x-7)(y+3)=0
Suy ra nghiệm của ptr là
x=7, y tùy ý thuộc Z
x tùy ý thuộc Z, y=-3.
\(x+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{1}{\frac{7}{3}}\)
\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{1}{2+\frac{1}{3}}\Leftrightarrow x=1;y=2;z=3\)