Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) So sánh ∠B và ∠C
Xét ΔABC ta có: AC > AB (8 > 6) ⇒ ∠C > ∠B (định lí)
b) Tính BC ?
Áp dụng định lí Pytago vào ΔABC vuông tại A
Ta có: BC2 = AB2 + AC2
= 62 + 82
= 36 + 64 = 100
⇒ BC = 10 (cm)
c) EA = EH
Xét hai tam giác vuông ABE và HBE có:
∠ABE = ∠HBE (BE là phân giác)
BE : cạnh chung
Do đó: ΔABE = ΔHBE (cạnh huyền - góc nhọn)
⇒ EA = EH (hai cạnh tương ứng)
A B C D E H 1 2
Cm: a) Xét t/giác ACE có \(\widehat{E}=90^0\) => \(\widehat{C_1}+\widehat{A}=90^0\)
Xét t/giác ABD có \(\widehat{D}=90^0\) => \(\widehat{B_1}+\widehat{A}=90^0\)
=> \(\widehat{B_1}=\widehat{C_1}\)
b) Xét tứ giác AEHD có \(\widehat{HEA}+\widehat{A}+\widehat{ADH}+\widehat{DHE}=360^0\)
=> \(\widehat{EHD}+\widehat{A}=360^0-\left(\widehat{AEH}+\widehat{HDA}\right)=360^0-\left(90^0+90^0\right)=180^0\)
(đây là dạng cách làm lớp 8)
HD cách khác, nối AH -> tính tổng của từng góc (VD: góc EAH + góc AHE = 900) -> cộng lại
Thanks Edogawa Conan nha!
Em lm đc câu b) cách kẻ AH rùi, cảm ơn nhìu!
a, xét \(\Delta AMBva\Delta AMC\)
AB=AC
AM cạnh chung
MB=MC
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b, xét \(\Delta AMBva\Delta CMD\)
AM=MD
\(\widehat{AMB}=\widehat{CMD}\)
MB=MC
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\)
mà 2 góc này ở vị chí so le trong
\(\Rightarrow AB//CD\)
c, theo bài: tia MD là tia dối của tia MA
\(\Rightarrow\widehat{AMD}=180^0\)
\(\widehat{KMD}=\widehat{IMA}\)( 2 góc đối đỉnh)
ta có: \(\widehat{AMD}=\widehat{AMK}+\widehat{KMD}\)
hay\(\widehat{AMD}=\widehat{AMK}+\widehat{AMI}=180^0\)
\(\Rightarrow\widehat{IMK}=180^0\)
\(\Rightarrow\)I,M,K thẳng hàng
3: \(\Leftrightarrow\left\{{}\begin{matrix}2AB=24\\AB-AC=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=12\\AC=5\end{matrix}\right.\)
=>BC=13
4: \(\Leftrightarrow\left\{{}\begin{matrix}2AB=16\\AB-AC=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8\\AC=6\end{matrix}\right.\)
=>BC=10
5: \(\Leftrightarrow\left\{{}\begin{matrix}2AB=56\\AB-AC=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=28\\AC=21\end{matrix}\right.\)
=>BC=35
Lời giải:
3.
$AB=(17+7):2=12$ (cm)
$AC=(17-7):2=5$ (cm)
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+5^2}=13$ (cm)
Các câu sau làm tương tự.