Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M I H K
a, có I là trung điểm của BC (Gt)
IM ⊥ BC (Gt)
=> IM là trung trực của BC (đn)
=> MB = MC (Định lí)
b, M thuộc tia phân giác của ^BAC (gt)
MH ⊥ AB (gt) và MK ⊥ AC (gt)
=> MH = MK (tính chất)
xét ΔMHB và ΔMKC có: MB = MC (Câu a)
^MHB = ^MKC = 90
=> ΔMHB = ΔMKC (ch-cgv)
=> MH = MK (Định nghĩa)
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
CMR tam giác ABM = ACM
Vì \(AB=AC\Rightarrow\Delta ABC\) cân tại \(A\) \(\Rightarrow\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM-\Delta ACM\) có :
\(AB=AC\left(gt\right)\)
\(BM=CM\) ( do AM là tia phân giác )
\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)
Vì \(\Delta ABM=\Delta ACM\Rightarrow BM=CM\) ( cạnh tương ứng )
\(\Rightarrow M\) là trung điểm của BC
\(\widehat{ABM}+\widehat{ACM}=180^0_{ }\)
\(\widehat{ABM}=\widehat{ACM}=\dfrac{180}{2}=90^0_{ }\)
\(\Rightarrow AM\perp BC\)
A M B C H K
a) Chứng minh MH=MK
Xét tam giác AMH và tam giac AMK có
AM cạnh chung
\(\widehat{MAH}=\widehat{MAK}\)(AM là tia phân giác của \(\widehat{BAC}\))
=> Tam giác AMH = tam giác AMK
=> MH=MK (đpcm)
b) Chứng minh tam giác ABC cân
Ta có M là trung điểm của BC (gt)
Nên AM là đường trung tuyến ứng cạnh BC
Mà AM cũng là đưởng phân giác ứng cạnh BC (gt)
Do đó tam giác ABC cân tại A (đpcm)
Kết bạn với mình nha :)